THE THERMAL DECOMPOSITION OF METHYL HYDROPEROXIDE

1965 ◽  
Vol 43 (8) ◽  
pp. 2236-2242 ◽  
Author(s):  
Alexander D. Kirk

The thermal decomposition of methyl hydroperoxide has been studied in solution and in the gas phase. The decomposition was found to be partly heterogeneous in solution in dimethyl phthalate and no reliable rate constants were obtained. Use of the toluene carrier method for the gas phase work enabled measurement of the rate constant for the homogeneous decomposition. The first order rate constants obtained range from 0.19 s−1 at 292 °C to 1.5 s−1 at 378 °C, leading to log A, 11± 2, and activation energy, 32 ± 5 kcal/mole. These results are compared with the expected values of log A, 13–14, and activation energy, 42 kcal/mole. The significance of these findings is discussed.

1985 ◽  
Vol 63 (11) ◽  
pp. 2945-2948 ◽  
Author(s):  
J.-R. Cao ◽  
R. A. Back

The thermal decomposition of cyclobutane-1,2-dione has been studied in the gas phase at temperatures from 120 to 250 °C and pressures from 0.2 to 1.5 Torr. Products were C2H4 + 2CO, apparently formed in a simple unimolecular process. The first-order rate constant was strongly pressure dependent, and values of k∞ were obtained by extrapolation of plots of 1/k vs. 1/p to1/p = 0. Experiments in a packed reaction vessel showed that the reaction was enhanced by surface at the lower temperatures. Arrhenius parameters for k∞, corrected for surface reaction, were log A (s−1) = 15.07(±0.3) and E = 39.3(±2) kcal/mol. This activation energy seems too low for a biradical mechanism, and it is suggested that the decomposition is probably a concerted process. The vapor pressure of solid cyclobutane-1,2-dione was measured at temperatures from 22 to 62 °C and a heat of sublimation of 13.1 kcal/mol was estimated.


1957 ◽  
Vol 30 (3) ◽  
pp. 911-927 ◽  
Author(s):  
Otto Lorenz ◽  
Elisabeth Echte

Abstract 1. The decrease of free sulfur occurs according to the first order law during the vulcanization of natural rubber accelerated by mercaptobenzothiazole in the presence of zinc oxide. The activating energy for this reaction amounts to 30.5 kcal./mole. 2. If zinc benzothiazolylmercaptide is used as an accelerator, one obtains the same rate constants for the sulfur decrease as in the presence of mercaptobenzothiazole. These seem to be equivalent as regards their effectiveness of acceleration. 3. A kinetic analysis of the reciprocal swelling, which represents a measure of network formation, indicates that the reaction is first order. Sulfur decrease and reciprocal swelling prove to be equal processes as regards rate. This is true where vulcanization is accelerated with mercaptobenzothiazole or with the zinc salt. 4. During vulcanization there occurs a decrease of accelerator concentration. This is dependent upon the temperature and is tied in with the combination sulfur with rubber. 5. If the quantity of the accelerator added is changed, the rate constants for sulfur decrease and for reciprocal swelling do not change, provided that a minimum quantity of accelerator is present. 6. In vulcanization accelerated with zinc benzothiazolylmercaptide, zinc oxide being absent, sulfur decrease again occurs according to the first order law but considerably faster, without thereby changing the activation energy. These investigations are being continued and the results will be discussed in detail in relation to other published contributions in this field.


1966 ◽  
Vol 44 (18) ◽  
pp. 2211-2217 ◽  
Author(s):  
J. B. Homer ◽  
F. P. Lossing

The thermal decomposition of biallyl has been investigated from 977 – 1 070 °K at helium carrier gas pressures of 10–50 Torr. Under these conditions the rate of central C—C bond fission to give two allyl radicals can be measured without interference from secondary reactions. The reaction at the pressures employed is first order with respect to biallyl, but between first and second order in the total pressure. The temperature dependence of the rate constants, extrapolated to infinite pressure, and corrected to 298 °K, gives an activation energy of 45.7 kcal/mole for the reaction, corresponding to ΔHf(allyl) = 33.0 kcal/mole.


1964 ◽  
Vol 17 (4) ◽  
pp. 406 ◽  
Author(s):  
GA Bottomley ◽  
GL Nyberg

The gas-phase thermal decomposition of dimethyldiazirine, (CH3)2CN2, at very slow rates has been investigated using precision gas-volumetric techniques previously applied to second virial coefficient studies. At 50-70� the first-order kinetics correspond to half-lives about 0.3-3.0 years. The present results, together with data obtained by other workers using conventional apparatus at 124-174�, fit a single log rate-reciprocal temperature activation energy equation.


The kinetics of the thermal decomposition of benzylamine were studied by a flow method using toluene as a carrier gas. The decomposition produced NH 3 and dibenzyl in a molar ratio of 1:1, and small quantities of permanent gases consisting mainly of H 2 . Over a temperature range of 150° (650 to 800° C) the process was found to be a homogeneous gas reaction, following first-order kinetics, the rate constant being expressed by k = 6 x 10 12 exp (59,000/ RT ) sec. -1 . It was concluded, therefore, that the mechanism of the decomposition could be represented by the following equations: C 6 H 5 . CH 2 . NH 2 → C 6 H 5 . CH 2 • + NH 2 •, C 6 H 5 . CH 3 + NH 2 •→ C 6 H 5 . CH 2 • + NH 3 , 2C 6 H 5 . CH 2 •→ dibenzyl, and the experimentally determined activation energy of 59 ± 4 kcal./mole is equal to the dissociation energy of the C-N bond in benzylamine. Using the available thermochemical data we calculated on this basis the heat of formation of the NH 2 radical as 35.5 kcal./mole, in a fair agreement with the result obtained by the study of the pyrolysis of hydrazine. A review of the reactions of the NH 2 radicals is given.


1957 ◽  
Vol 35 (10) ◽  
pp. 1216-1224 ◽  
Author(s):  
G. O. Pritchard ◽  
E. W. R. Steacie

The photolytic and thermal decomposition of azomethane in the presence of hexafluoroacetone produces small amounts of fluorinated products, mainly fluoroform. The mechanism of this and related reactions is discussed. It is concluded that the proposed reaction.[Formula: see text]has an activation energy of about 6 kcal./mole, with a steric factor of about 10−5.


The uninhibited ethane decomposition was studied from 550 to 640°C with the object of determining the overall mechanism. The reaction was found to be accurately of the first order at the higher pressures and lower temperatures employed, and to have an activation energy of 73·1 kcal under these conditions. The rate was decreased slightly by an increase in surface area, and the order was then somewhat greater than unity. At 640°C there was a transition to an order of 3/2 at a pressure of about 60 mm. Evidence is adduced in support of the conclusion that the initiating reaction is a second-order split of C 2 H 6 into 2CH 3 , as proposed by Küchler & Theile, and that the terminating step is C 2 H 5 + C 2 H 5 at the higher pressures and H + C 2 H 5 at the lower ones. The mechanism is shown to give a satisfactory interpretation of the time-course of the reaction, of the effects of adding ethylene and hydrogen, and of the effect of increasing the surface area. Calculated rates, using the rate constants for the elementary steps, are in good agreement with experiment.


1962 ◽  
Vol 40 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
S. J. Price

The pyrolysis of toluene has been studied in a flow system from 913 to 1143 °K. First-order rate constants are independent of the toluene concentration but decrease approximately 9% when the contact time is reduced from 1.0 to 0.41 second. Increasing the contact time from 1.0 second to 2.07 seconds does not affect the rate constant. The overall rate has been resolved into homogeneous and heterogeneous components. It is suggested that the activation energy of the homogeneous process, 85 kcal/mole, may be associated with D(C6H5CH2—H).


1968 ◽  
Vol 21 (3) ◽  
pp. 725 ◽  
Author(s):  
JTD Cross ◽  
VR Stimson

Hydrogen bromide catalyses the decomposition of isobutyric acid into propene, carbon monoxide, and water at 369-454�. Hydrogen bromide is not lost. Individual runs follow the first-order rate law, and the rate constants are proportional to the hydrogen bromide pressure. The Arrhenius parameters are: E = 33.17 kcal mole-1 and A = 1012.87 sec-1 ml mole-1, and the reaction is homogeneous and molecular. Added water or methanol retards the reaction.


1959 ◽  
Vol 32 (2) ◽  
pp. 566-576
Author(s):  
Walter Scheele ◽  
Klaus Hummel

Abstract Bound sulfur in a pure thiuram vulcanizate increases relatively rapidly at first at all temperatures, reaches a poorly defined maximum at about 27 to 30%, independent of temperature, and then recedes slightly to reach a limiting value of 25% also independent of temperature, based on the original thiuram disulfide. The rise in sulfur content at the start points to a temperature-independent limiting value of 33%. It is shown that the combination of sulfur in this region initially follows a first order reaction, and goes at the same rate as the reduction in concentration of thiuram disulfide. It can be seen from the above that sulfur may be combined in thiuram vulcanization without simultaneous crosslinking. The dithiocarbamate formation increases rapidly in the region of longer vulcanization times, after the maximum in bound sulfur has been reached, without further combination of sulfur with the vulcanizate. The rate constants for thiuram decrease, for dithiocarbamate increase and for sulfur combination were calculated. The temperature dependence of each of these reactions has practically the same activation energy, 23 kcal/mole. The bound sulfur content of the vulcanizates in pure thiuram vulcanizations is no criterion of the state of vulcanization.


Sign in / Sign up

Export Citation Format

Share Document