Interactions de l'ion Ag+ avec la glutarimide

1984 ◽  
Vol 62 (7) ◽  
pp. 1287-1291 ◽  
Author(s):  
Johanne Perron ◽  
André L. Beauchamp

The 1:1 complex formed between Ag+ ions and glutarimide was investigated by X-ray diffraction, infrared spectroscopy, and 1H and 13C nmr. The crystals are monoclinic, C2/c, a = 13.497(3) Å, b = 9.503(2) Å, c = 9.600(4) Å, β = 92.30(3)°, Z = 4 molecules per cell. The structure was refined on 1086 nonzero [Formula: see text] reflections to R = 0.027. One half of the Ag atoms are linearly coordinated to the N atoms of two deprotonated glutarimide ligands, whereas the other half are surrounded by an approximate tetrahedron of four carbonyl oxygens belonging to two adjacent [Glu–Ag–Glu]− units. The [Glu–Ag–Glu]− groups are joined by tetrahedrally coordinated Ag atoms into infinite chains along the c axis. Complexation introduces a number of changes in the infrared spectrum of glutarimide. They can be related to the disappearance of the N—H vibrator and the change of bond orders in the —C(O)—N—C(O)— portion of the ligand. The nmr spectra show that coordinated glutarimide retains a mirror plane when the Ag complex is dissolved in DMSO. This suggests that the O-bonded Ag atoms dissociate to a large extent in solution, leaving the linear [Glu–Ag–Glu]− ions as the major glutarimide complex species.


2015 ◽  
Vol 93 (9) ◽  
pp. 954-959 ◽  
Author(s):  
Sanehiro Muromachi ◽  
Masato Kida ◽  
Satoshi Takeya ◽  
Yoshitaka Yamamoto ◽  
Ryo Ohmura

The ionic clathrate hydrate of tetra-n-butylammonium (TBA) acrylate was characterized using single-crystal X-ray diffraction, elemental analysis, and nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of TBA acrylate was Jeffrey’s type III and tetragonal P42/n, with a 33.076(7) × 33.076(7) × 12.170(2) Å3 unit cell. The volume of the unit cell was 13315(5) Å3, which is almost twice that of the ideal structure. The TBA cation was disordered and located in two types of fused cages. Although the acrylate anion was located in a pentagonal dodecahedral cage neighboring the TBA cation, there is a residual acrylate anion that could be around the other TBA cation in the unit cell. Solid-state 13C NMR spectra showed that the TBA cation was clearly disordered at 173 K, but not at 239 K. NMR peaks from the acrylate anion were not observed at either temperature. This is probably because of the strong restriction on the acrylate anion by hydrogen bonding with the lattice water. Some of the characteristics of the anion and cation of the ionic guest incorporated in the hydrate structure have yet to be defined. Further research is needed to clarify complexation of the ionic clathrate hydrate and the ionic guest, and the resulting structure.



2020 ◽  
Vol 24 (10) ◽  
pp. 1139-1147
Author(s):  
Yang Mingyan ◽  
Wang Daoquan ◽  
Wang Mingan

2-Phenylcyclododecanone and 2-cyclohexylcyclododecanone derivatives were synthesized and characterized by 1H NMR, 13C NMR, HR-ESI-MS and X-ray diffraction. Their preferred conformations were analyzed by the coupling constants in the 1H NMR spectra and X-ray diffraction, which showed the skeleton ring of these derivatives containing [3333]-2-one conformation, and the phenyl groups were located at the side-exo position of [3333]-2-one conformation due to the strong π-π repulsive interaction between the π- electron of benzene ring and π-electron of carbonyl group. The cyclohexyl groups were located at the corner-syn or the side-exo position of [3333]-2-one conformation depending on the hindrance of the other substituted groups. The π-π electron effect played a crucial role in efficiently controlling the preferred conformation of 2-aromatic cyclododecanone and the other 2-aromatic macrocyclic derivatives with the similar preferred square and rectangular conformations.



1978 ◽  
Vol 56 (14) ◽  
pp. 1874-1880 ◽  
Author(s):  
Philippe Joubert ◽  
Roland Bougon ◽  
Bernard Gaudreau

The oxypentafluorouranates(VI) MUOF5, where M = NH4, K, Rb, Cs, have been synthetized from reaction of UOF4 with the ammonium or corresponding alkali metal fluoride in liquid SO2. According to X-ray diffraction, Raman and infrared spectroscopy, and from an isomorphism with the corresponding hexafluorouranates(V) MUF6, two different environments around the uranium atom are observed. In CsUOF5 the five fluorine atoms and the oxygen around the uranium result in a pseudo-octahedral surrounding whereas for the other complexes (M = NH4, K, Rb) each uranium is surrounded by eight light atoms forming a dodecahedron. In this structure the dodecahedra are linked together by fluorine atoms to form infinite chains. The UOF5− ion has been characterized by vibrational spectroscopy in the solid state. The proposed assignment, which was made with the assumption of a C4v symmetry of the UOF5− ion, was confirmed by a force constant calculation. From these data and contrary to the values reported for comparable oxypentafluoroanions, the axial fluorine is found to be less ionic than the equatorial ones.



2006 ◽  
Vol 71 (9) ◽  
pp. 1278-1302 ◽  
Author(s):  
Martin Valík ◽  
Pavel Matějka ◽  
Eberhardt Herdtweck ◽  
Vladimír Král ◽  
Bohumil Dolensky

A new bis-Tröger's base was prepared from a tetraamine precursor as a mixture of two diastereoisomers. One of the isomers has a chair-like geometry, and the other possesses a boat-like geometry, embodying molecular tweezers. A one-pot preparation of bis-TB isomers and their interconversion under acid conditions was also studied. Structures of both isomers were confirmed by single-crystal X-ray diffraction. Extensive spectroscopic data, including 1H and 13C NMR, IR and Raman spectra of the isomers, are given.



1999 ◽  
Vol 77 (5-6) ◽  
pp. 1057-1065
Author(s):  
John T Edward ◽  
Francis L Chubb ◽  
Denis FR Gilson ◽  
Rosemary C Hynes ◽  
Françoise Sauriol ◽  
...  

Three new cage peroxides, 1,6-diaza-3,4,8,9-tetraoxabicyclo[4.4.2]dodecane (3a),1,6-diaza-3,4,8,9-tetraoxa-11-methylbicyclo[4.4.2]dodecane (3b), and 1,6-diaza-3,4,8,9-tetraoxatricyclo[4.4.2.411,12]hexadecane (4), have been prepared by reaction of 1,2-diaminoethane, 1,2-diaminopropane, and trans-1,2-diaminocyclohexane, respectively, with formaldehyde and hydrogen peroxide in aqueous acidic solution. Their structures have been established by X-ray diffraction, and show the bridgehead nitrogen atoms to be predominantly sp2 hybridized. The structures accord with 1H and 13C NMR spectra. Variable temperature NMR studies show that the diperoxide 3a begins to undergo rapid inversion (on the NMR time scale) at about 303 K; up to 370 K the diperoxides 3b and 4 show no conformational change.Key words: cage compounds, formaldehyde, peroxides, amine nitrogen, hybridization.



1995 ◽  
Vol 50 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Udo Dörfler ◽  
Wolfgang Milius ◽  
Max Herberhold

According to a single crystal X-ray structure determination all three ferrocenyl substituents of triferrocenylborane (1) adopt the same orientation with respect to the BC3-plane [P21/c monoclinic; Z = 4; a = 1353.5(3), b = 1695.6(3), c = 1056.4(2) pm, β = 109.27(3)°]. The simulated X-ray powder pattern of the single crystal is identical with the powder diagram of a macroscopic sample, indicating the presence of a single diastereomer (1a) in the solid state. However, at low temperature (< - 95 °C) in solution, the 13C NMR spectra suggest the presence of the second diastereomer (1b) in which one ferrocenyl group is oriented opposite to the other two with respect to the central BC3-plane.



Author(s):  
S.M. Kolupayev ◽  
E.P. Bereznyak

This paper presents the results of the combined use of infrared spectroscopy and X-ray structural analysis in assessing the mineral composition of urinary concrement obtained during extracorporeal shock wave lithotripsy in 34 patients with urolithiasis. Registration of infrared spectra was carried out by an IKS-29 (LOMO) infrared spectrophotometer in the spectral range 4000 - 400 cm-1. X-ray structural analysis was carried out by X-ray diffraction using an X-ray diffractometer DRON-4-07. The mineral composition of 22 (64,70%) urinary stone samples according to infrared spectroscopy data, fully corresponded to the data of X-ray structural analysis. Vevellite, hydroxylapatite and uric acid were identified in most stones. In 4 (11,76%) cases, this method did not allow us to identify the phosphate component in the composition of the concrements accurately. Among the mineral components, which had the same characteristics in the infrared spectrum and corresponded to calcium phosphate, during the X-ray structural analysis, hydroxyapatite was identified in 3 (8,82%) cases, and struvite in 1 (2,94%) sample. 8 (23,52%) samples of urinary concrements had an amorphous-crystalline structure, which in the infrared spectrum was characterized by absorption bands corresponding to vevellite. When X-ray diffraction analysis of these samples was carried out, undifferentiated areas in the form of a halo were determined on the diffractogram that pointed out the presence of an amorphous phase. The data obtained demonstrate the potential of using infrared spectroscopy as the first choice method in assessing the mineral composition of urinary stones. X-ray structural analysis can be recommended as a clarifying technique in order to identify the phosphate component of stones of a crystal structure, as well as in the case of detecting rare, atypical minerals.



2009 ◽  
Vol 283-286 ◽  
pp. 268-272 ◽  
Author(s):  
S. Cihangir ◽  
Celaletdin Ergun ◽  
Suat Yılmaz ◽  
Filiz Çinar Şahin

In the present study, a method based on sulfuric acid dehydration of sugar was developed to synthesize a precursor material, which can yield B4C/SiC composites at much lower temperatures compared to traditional carbothermal methods. The precursor material for pure B4C was heat treated at the temperatures between 400 and 1600oC under inert atmosphere. The precursor material for B4C /SiC composites was heat treated only at 1600oC under an inert atmosphere. Then the samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results showed that B-C bonds formed as low as 400oC. On the other hand, crystallized B4C and B4C / SiC composites can be obtained at the heat treatment temperatures between 1400 and 1600oC.



1993 ◽  
Vol 71 (12) ◽  
pp. 2060-2069 ◽  
Author(s):  
Anne-Marie Lebuis ◽  
André L. Beauchamp

Four Re(V) oxo compounds were obtained from 7-azaindole (Haza) and ReOCl3(PPh3)2: the oxo-bridged dimer Re2O3Cl4(Haza)4 (1), the oxo–ethoxo monomers ReO(OEt)Cl2(Haza)2 (2) and ReO(OEt)Cl2(Haza)(PPh3) (3), and the dioxo [ReO2(Haza)4]Cl salt (4a). [ReO2(Haza)4]I (4b) was also prepared from ReO2I(PPh3)2. The ReO(OEt)Cl2(Haza)2 complex was shown by X-ray diffraction (C2/c, a = 16.292, b = 9.395, c = 12.104 Å, β = 101.47°, R = 0.041) to consist of individual molecules of the trans-trans isomer in which azaindole is N7-bonded. Crystals of [Formula: see text] (C2/m a = 15.422, b = 13.055, c = 9.086 Å, β = 91.13°, R = 0.059) contain well separated Cl− anions and trans-dioxo cations. The N7-bonded azaindole ligands are held parallel to the O=Re=O direction by intramolecular [Formula: see text] hydrogen bonds, but the relative orientation of the four ligands cannot be determined because of disorder. Characteristic Re—oxygen vibrations are observed in infrared for each type of compounds. The 1H and 13C NMR spectra are discussed in relation with the azaindole binding mode.



1992 ◽  
Vol 57 (6) ◽  
pp. 1299-1313 ◽  
Author(s):  
Juraj Bernát ◽  
Ladislav Kniežo ◽  
Gabriela Birošová ◽  
Miloš Buděšínský ◽  
Jaroslav Podlaha ◽  
...  

Substituted 4-hydroxy-1,3-dioxanes II react rapidly with PO(NCS)3 to give 4-isothiocyanato-1,3-dioxanes III. The 1H NMR spectra showed that in the isothiocyanate IIIa the predominant stereoisomer has its NCS group in axial position. The addition of benzylamine to the isothiocyanates IIIa and IIIb gave uniform thioureas IVa and IVb with equatorial alkyl groups at 2 and 6 positions and axial thioureido group at 4 position. On the other hand, the isothiocyanate IIIc reacts with benzylamine to give a mixture of three stereoisomeric thioureas V,VI, and VIII. The structure of VI was proved by means of X-ray diffraction analysis; in crystalline form the molecules of VI are present as H-bonded dimers (N-H...O).



Sign in / Sign up

Export Citation Format

Share Document