Tin-119 NMR of 1,3,2-dioxastannolanes and a 1,3,2-dioxastannane in the solid state

1992 ◽  
Vol 70 (1) ◽  
pp. 205-217 ◽  
Author(s):  
T. Bruce Grindley ◽  
Roderick E. Wasylishen ◽  
Rasiah Thangarasa ◽  
William P. Power ◽  
Ronald D. Curtis

The cross-polarized static and high-resolution magic angle spinning 119Sn NMR spectra of a number of 2,2-dialkyl-1,3,2-dioxastannolanes and one 1,3,2-dioxastannane have been measured in the solid state. For the four compounds on which X-ray studies had been performed, the numbers and positions of the isotropic peaks in the high-resolution spectra were related to the number of tin sites present and the state of oligomerization of the compounds. The chemical shifts of hexacoordinate Sn nuclei are 35–80 ppm larger in polymeric solids than for the same compounds in solution where the compounds exist as trimers and tetramers. States of oligomerization for solids that had not been previously studied by X-ray crystallography were determined using CP/MAS 119Sn NMR spectroscopy. The principal components of the 119Sn chemical shift tensors were obtained from the static spectra and used to calculate chemical shift anisotropies and asymmetry parameters. The values of the chemical shift anisotropies ranged from 600 to 800 ppm for 1,3,2-dioxastannolanes but the value for a 1,3,2-dioxastannane was larger, 919 ppm. The chemical shift anisotropies measured directly from the solid-state powder patterns are in excellent agreement with the values derived from previous variable temperature spin-lattice relaxation measurements in solution when the same oligomer was present in both states. Our results support our previous conclusion that the antisymmetric terms of the chemical shift tensor make a small or negligible contribution to the rate of 119Sn spin-lattice relaxation in these compounds. Keywords: 1,3,2-dioxastannolanes, stannylene acetals, 119Sn NMR, 119Sn NMR of solids, 119Sn chemical shift an-isotropy.

2011 ◽  
Vol 89 (7) ◽  
pp. 870-884 ◽  
Author(s):  
Klaus Eichele ◽  
Arnd-Rüdiger Grimmer

Field-dependent 31P solid-state NMR studies demonstrate that the line shape in spectra of β-VOPO4 depends on 51V–31P direct and indirect spin-spin interactions (M2 (51V, 31P) = 101(23) × 106 rad2 s–2, 2Jiso (51V, 31P) = 48(5) Hz) and, to a lesser extent, on 31P chemical shift anisotropy (δiso = –10.4(2), Ω = δ11 – δ33 = 22(2) ppm) and 31P–31P interactions (M2 (31P, 31P) = 6.7(1) × 106 rad2 s–2). In contrast, homonuclear dipolar interactions play an important role for the field and spinning rate dependent 31P spin-lattice relaxation via paramagnetic impurities (T1 = 20–60 s). Vanadium-51 magic-angle spinning NMR spectra indicate a sizeable chemical shift anisotropy (δiso = –754(1), δ11 = –336(10), δ22 = –344(6), δ33 = –1581(8) ppm) and nuclear quadrupole interaction (χ = 1.5(1) MHz, η = 0.35(5)); the principal axis systems of both interactions are clearly not coincident, with an angle of 35(5)° between the greatest component of the electric field gradient tensor and δ33.


Author(s):  
ASIF EQUBAL ◽  
Kan Tagami ◽  
Songi Han

In this paper, we report on an entirely novel way of improving the MAS-DNP efficiency by shaped μw pulse train irradiation for fast and broad-banded (FAB) saturation of the electron spin resonance. FAB-DNP achieved with Arbitrary Wave Generated shaped μw pulse trains facilitates effective and selective saturation of a defined fraction of the total electron spins, and provides superior control over the DNP efficiency under MAS. Experimental and quantum-mechanics based numerically simulated results together demonstrate that FAB-DNP significantly outperforms CW-DNP when the EPR-line of PAs is broadened by conformational distribution and exchange coupling. We demonstrate that the maximum benefit of FAB DNP is achieved when the electron spin-lattice relaxation is fast relative to the MAS frequency, i.e. at higher temperatures and/or when employing metals as PAs. Calculations predict that under short T<sub>1e </sub>conditions AWG-DNP can achieve as much as ~4-fold greater enhancement compared to CW-DNP.


2019 ◽  
Vol 59 (3) ◽  
Author(s):  
Laurynas Dagys ◽  
Sergejus Balčiūnas ◽  
Jûras Banys ◽  
Feliksas Kuliešius ◽  
Vladimir Chizhik ◽  
...  

The 1H–13C cross-polarization magic angle spinning (CP MAS) kinetics was studied in poly(vinyl phosphonic acid) (pVPA), i.e. material with high degrees of freedom of proton motion along H-bonded chains. It has been shown that the CP kinetic data for the adjacent 1H–13C spin pairs can be described in the frame of the isotropic spin-diffusion approach. The rates of spin diffusion and spin-lattice relaxation as well as the parameters accounting for spin coupling and the effective size of spin clusters have been determined. The local order parameter S ≈ 0.63±0.02, determined as the ratio of the measured dipolar 1H–13C coupling constant and the calculated static dipolar coupling constant, is significantly lower than the values deduced for related sites in other polymers and in series of amino acids. This means that the local disorder of the C–H bonds in pVPA is between those for rather rigid C–H bond configurations having S = 0.8–1.0 and highly disordered –CH3 groups (S ~ 0.4). This effect can be attributed to the presence of the proton transfer path where proton motion is easy to activate. The activation energy for the proton motion Ea = 59±7 kJ/mol was determined from the impedance spectroscopy data analysing the temperature and frequency dependences of the complex dielectric permittivity of pVPA. The rates of proton spin-lattice relaxation and spin diffusion are of the same order and both run in the time scale of milliseconds.


2003 ◽  
Vol 81 (11) ◽  
pp. 1187-1195 ◽  
Author(s):  
Jordan M Geller ◽  
Ian S Butler ◽  
Denis FR Gilson ◽  
Frederick G Morin ◽  
Ivor Wharf ◽  
...  

The solid-state 119Sn cross-polarization (CP) magic angle spinning (MAS) NMR spectra of a series of triaryltin chlorides of the form Ar3SnCl have been acquired. The indirect spin-spin coupling constants (J(119Sn-35Cl)), quadrupolar-dipolar shifts (d(119Sn-35Cl)), and the 119Sn chemical shift tensors were extracted. For the spectrum of triphenyltin chloride (I) the validity of the first-order perturbation approximation was tested by comparing results of both the perturbation and cubic-equation approaches and a variable-temperature NMR study undertaken to investigate the influence of the previously reported molecular motion in the solid. The X-ray crystal structures of the tris(o-tolyl)tin chloride (II) and tris(p-tolyl)tin chloride (IV) complexes have been examined. They belong to the monoclinic and triclinic space groups P21/n and P[Formula: see text], respectively, which are different from the previously reported tris(m-tolyl)tin chloride (III) complex, which crystallizes in the space group R3 and has threefold molecular symmetry. The structures and NMR properties of the complexes with meta-substituents are quite different from those with ortho- or para-substituents having axially symmetric shift tensors with small spans and larger J values.Key words: aryltin chlorides, magic angle spinning NMR, tin-chlorine spin-spin coupling, 119Sn chemical shift tensor, crystal structure.


1989 ◽  
Vol 62 (1) ◽  
pp. 82-97 ◽  
Author(s):  
Mladen Andreis ◽  
Juwhan Liu ◽  
Jack L. Koenig

Abstract Molecular motions in sulfur-vulcanized NR are investigated by solid state 13C NMR relaxation techniques. Since the high-resolution spectra of crosslinked samples exhibit overlapping in the aliphatic region, a combined application of variable temperature spin-lattice relaxation measurements and the computer simulation of the overlapped spectral region is used in order to detect resonance signals. Motional restrictions introduced by crosslinks are investigated from the temperature dependence of nT1 relaxation times for individual carbons. The V-curves for all polyisoprene signals and for the detectable signals arising from the network units exhibit a similar general trend with increased curing time: curve broadening, shift of the minima to higher temperatures, and increase of the T1 min values. All the backbone carbons show quantitatively similar effects of vulcanization on the spin-lattice relaxation. At shorter curing times, motional restrictions for the methyl side group are more pronounced compared to the main-chain carbons. The experimental data suggest that the isotropic motion is strongly affected by the crosslinking. Librational motion is less affected, while the change in rotational motion has no significant influence on the relaxation curve. Although experimental data cover a relatively narrow temperature range, not sufficiently wide for a more accurate quantitative analysis, the results indicate that concepts of plural correlation times and a distribution of correlation times are applicable.


Sign in / Sign up

Export Citation Format

Share Document