Séquences répétées des génomes de Rhizobium sp. NGR234 et Sinorhizobium meliloti : une analyse comparative par séquençage aléatoire

2001 ◽  
Vol 47 (6) ◽  
pp. 548-558 ◽  
Author(s):  
Xavier Perret ◽  
Jeremy Parsons ◽  
Virginie Viprey ◽  
Kathrin Reichwald ◽  
William J Broughton

Amongst prokaryotic genomes, those of nitrogen-fixing members of the Rhizobiaceae family are relatively large (6–9 Mb), often include mega-plasmids of 1.5–2 Mb, and contain numerous families of repeated DNA sequences. Although most essential nodulation and nitrogen fixation genes are well characterized, these represent only a small fraction of the DNA content. Little is known about the detailed structure of rhizobial genomes. With the development of sequencing techniques and new bio-informatic tools such studies become possible, however. Using the 2275 shot-gun sequences of ANU265 (a derivative of NGR234 cured of pNGR234a), we have identified numerous families of repeats. Amongst these, the 58-bp-long NGRREP-4 represents the third most abundant DNA sequence after the RIME1 and RIME2 repeats, all of which are also found in Sinorhizobium meliloti. Surprisingly, studies on the distribution of these elements showed that in proportion to its size, the chromosome of NGR234 carries many more RIME modules than pNGR234a or pNGR234b. Together with the presence in NGR234 and S. meliloti 1021 of an insertion sequence (IS) element more conserved than essential nodulation and nitrogen fixation genes, these results give new insights into the origin and evolution of rhizobial genomes.Key words: shot-gun, repeats, BIME.

2016 ◽  
Vol 31 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Takashi Okubo ◽  
Pongdet Piromyou ◽  
Panlada Tittabutr ◽  
Neung Teaumroong ◽  
Kiwamu Minamisawa

Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 375-392
Author(s):  
B A Kunz ◽  
G R Taylor ◽  
R H Haynes

ABSTRACT The biosynthesis of thymidylate in the yeast Saccharomyces cerevisiae can be inhibited by antifolate drugs. We have found that antifolate treatment enhances the formation of leucine prototrophs in a haploid strain of yeast carrying, on the same chromosome, two different mutant leu2 alleles separated by Escherichia coli plasmid sequences. That this effect is a consequence of thymine nucleotide depletion was verified by the finding that provision of exogenous thymidylate eliminates the increased production of Leu+ colonies. DNA hybridization analysis revealed that recombination, including reciprocal exchange, gene conversion and unequal sister-chromatid crossing over, between the duplicated genes gave rise to the induced Leu+ segregants. Although gene conversion unaccompanied by crossing over was responsible for the major fraction of leucine prototrophs, events involving reciprocal exchange exhibited the largest increase in frequency. These data show that recombination is induced between directly repeated DNA sequences under conditions of thymine nucleotide depletion. In addition, the results of this and previous studies are consistent with the possibility that inhibition of thymidylate biosynthesis in yeast may create a metabolic condition that provokes all forms of mitotic recombination.


Genomics ◽  
1992 ◽  
Vol 14 (2) ◽  
pp. 462-469 ◽  
Author(s):  
Cort S. Madsen ◽  
Dineke H. de Kloet ◽  
Jean E. Brooks ◽  
Siwo R. de Kloet

2001 ◽  
Vol 14 (7) ◽  
pp. 887-894 ◽  
Author(s):  
Boglárka Oláh ◽  
Erno Kiss ◽  
Zoltán Györgypál ◽  
Judit Borzi ◽  
Gyöngyi Cinege ◽  
...  

In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the “ntrPR operon,” which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.


Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 944-953 ◽  
Author(s):  
Xinping Zhao ◽  
Gary Kochert

We have characterized a repeated DNA sequence (RTL 122) from rice (Oryza sauva L.) with respect to its organization in the rice genome and its distribution among rice and other plants. The results indicate that the RTL 122 sequence is interspersed in the rice genome and limited to the genus Oryza. It is highly polymorphic and can be used to fingerprint rice varieties. A structure was observed in which several repeated sequences were clustered in DNA regions of 15–20 kb. We characterized three bacteriophage lambda clones that contained the RTL 122 sequence. Southern analysis using probes derived from restriction fragments of the three lambda clones indicated that all fragments except one are interspersed repeated sequences and belong to different repeated sequence families. Subsequent slot blot hybridization showed that most of them are only present within the genus Oryza. Some of the Oryza-specific, physically linked sequences show the same phylogenetic distribution, which suggests that these sequences might have evolved in a coordinate fashion. On the other hand, some of the repeated sequences have a different distribution even though they are physically adjacent in the genome. We speculate that such blocks of interspersed repeated sequences may serve as hotspots for rapid changes in the rice genome.Key words: rice, Oryza, repeated sequences, DNA fingerprinting, coordinated evolution.


Sign in / Sign up

Export Citation Format

Share Document