Defects in pyruvate kinase cause a conditional increase of thiamine synthesis inSalmonella typhimurium

1999 ◽  
Vol 45 (7) ◽  
pp. 565-572 ◽  
Author(s):  
Todd Christian ◽  
Diana M Downs

As genomic sequence data become more prevalent, the challenges in microbial physiology shift from identifying biochemical pathways to understanding the interactions that occur between them to create a robust but responsive metabolism. One of the most powerful methods to identify such interactions is in vivo phenotypic analysis. We have utilized thiamine synthesis as a model to detect subtle metabolic interactions due to the sensitivity allowed by the small cellular requirement for this vitamin. Although purine biosynthesis produces an intermediate in thiamine synthesis, mutants blocked in the first step of de novo purine biosynthesis (PurF) are able to grow in the absence of thiamine owing to an alternative synthesis. A number of general metabolic defects have been found to prevent PurF-independent thiamine synthesis. Here we report stimulation of thiamine-independent growth caused by a mutation in one or both genes encoding the pyruvate kinase isozymes. The results presented herein represent the first phenotype described for mutants defective in pykA or pykF, and thus identify metabolic interactions that exist in vivo.Key words: thiamine synthesis, metabolic integration.

1980 ◽  
Vol 26 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Stephen A. Morse ◽  
Lynne Bartenstein

Strains isolated from disseminated gonococcal infections often require hypoxanthine for growth. The biochemical bases for the requirement for hypoxanthine in strains isolated from both disseminated (Ile−Val−Arg−Hyx−Ura−phenotype) and non-disseminated (Hyx−phenotype) infections were compared. The requirement for hypoxanthine was dependent upon the composition of the growth medium. In a complete defined medium, hypoxanthine was replaced by a mixture of adenine and guanine but not by either purine alone. The addition of adenine alone inhibited gonococcal growth. This inhibition was reversed by the addition of guanine and most likely resulted from an inhibition of de novo purine biosynthesis. In a histidine-free medium, adenine replaced the hypoxanthine requirement in Ile−Val−Arg−Hyx−Ura− strains. Adenine did not replace the hypoxanthine requirement in Hyx− strains. The Ile−Val−Arg−Hyx−Ura− strains exhibited a markedly reduced rate of de novo purine biosynthesis while Hyx− strains were blocked in this pathway. In vivo concentrations of purines are important factors which may limit the intracellular or extracellular growth of these strains.


2000 ◽  
Vol 16 (1-2) ◽  
pp. 3-13 ◽  
Author(s):  
Peter L. Wang

Recombination of homologous genes is a powerful mechanism for generating sequence diversity, and can be applied to protein analysis and directed evolution.In vitrorecombination methods such as DNA shuffling are very flexible and can give hybrid genes with multiple crossovers; they have been used extensively to evolve proteins with improved and novel properties.In vivorecombination in bothE. coliand yeast is greatly enhanced by double-strand breaks; forE. coli, mutant strains are often necessary to obtain high efficiency. Intra- and inter-molecular recombinationIn vivohave distinct features; both give hybrids with one or two crossovers, and have been used to study structure-function relationships of many proteins. Recentlyin vivorecombination has been used to generate diversity for directed evolution, creating a large phage display antibody library. Recombination methods will become increasingly useful in light of the explosion in genomic sequence data and potential for engineered proteins.


2019 ◽  
Vol 116 (27) ◽  
pp. 13563-13572 ◽  
Author(s):  
William E. Sause ◽  
Divya Balasubramanian ◽  
Irnov Irnov ◽  
Richard Copin ◽  
Mitchell J. Sullivan ◽  
...  

The pathogen Staphylococcus aureus colonizes and infects a variety of different sites within the human body. To adapt to these different environments, S. aureus relies on a complex and finely tuned regulatory network. While some of these networks have been well-elucidated, the functions of more than 50% of the transcriptional regulators in S. aureus remain unexplored. Here, we assess the contribution of the LacI family of metabolic regulators to staphylococcal virulence. We found that inactivating the purine biosynthesis regulator purR resulted in a strain that was acutely virulent in bloodstream infection models in mice and in ex vivo models using primary human neutrophils. Remarkably, these enhanced pathogenic traits are independent of purine biosynthesis, as the purR mutant was still highly virulent in the presence of mutations that disrupt PurR’s canonical role. Through the use of transcriptomics coupled with proteomics, we revealed that a number of virulence factors are differentially regulated in the absence of purR. Indeed, we demonstrate that PurR directly binds to the promoters of genes encoding virulence factors and to master regulators of virulence. These results guided us into further ex vivo and in vivo studies, where we discovered that S. aureus toxins drive the death of human phagocytes and mice, whereas the surface adhesin FnbA contributes to the increased bacterial burden observed in the purR mutant. Thus, S. aureus repurposes a metabolic regulator to directly control the expression of virulence factors, and by doing so, tempers its pathogenesis.


2004 ◽  
Vol 385 (11) ◽  
pp. 1059-1067 ◽  
Author(s):  
Ewa Golonka ◽  
Renata Filipek ◽  
Artur Sabat ◽  
Anna Sinczak ◽  
Jan Potempa

AbstractStaphylococcus aureus, a leading cause of bacterial infections in humans, is endowed with a wealth of virulence factors that contribute to the disease process. Several extracellular proteolytic enzymes, including cysteine proteinases referred to as the staphopains (staphopain A, encoded by thescpAgene, and staphopain B, encoded bysspB), have proposed roles for staphylococcal virulence. Here we present data regarding the distribution, copy number and genetic variability of the genes encoding the staphopains in a large number ofS. aureusstrains. The polymorphism of thescpAandsspBgenes in three laboratory strains and 126 clinical isolates was analyzed by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). Both genes were detected in all isolates by PCR amplification and, based on the PCR-RFLP patterns, classified as four types forscpAand six types forsspB. Those with the most divergent patterns were subjected to DNA sequencing and compared with genomic sequence data for the seven available strains ofS. aureus. Southern blot analysis of thescpAandsspBsequences indicates that they are strongly conserved as single-copy genes in the genome of eachS. aureusstrain investigated. Taken together, these data suggest that the staphopains have important housekeeping and/or virulence functions, and therefore may constitute an interesting target for the development of therapeutic inhibitors for the treatment of staphylococcal diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agostina Crotta Asis ◽  
Franco Savoretti ◽  
Matías Cabruja ◽  
Hugo Gramajo ◽  
Gabriela Gago

AbstractPhosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.


2018 ◽  
Vol 200 (24) ◽  
Author(s):  
Joshua E. Pitzer ◽  
Tonya N. Zeczycki ◽  
John E. Baumgartner ◽  
Daniel W. Martin ◽  
R. Martin Roop

ABSTRACTPyruvate kinase plays a central role in glucose catabolism in bacteria, and efficient utilization of this hexose has been linked to the virulence ofBrucellastrains in mice. The brucellae produce a single pyruvate kinase which is an ortholog of theBradyrhizobiummanganese (Mn)-dependent pyruvate kinase PykM. A biochemical analysis of theBrucellapyruvate kinase and phenotypic analysis of aBrucella abortusmutant defective in high-affinity Mn import indicate that this enzyme is an authentic PykM ortholog which functions as a Mn-dependent enzymein vivo. The loss of PykM has a negative impact on the capacity of the parental 2308 strain to utilize glucose, fructose, and galactose but not on its ability to utilize ribose, xylose, arabinose, or erythritol, and apykMmutant displays significant attenuation in C57BL/6 mice. Although the enzyme pyruvate phosphate dikinase (PpdK) can substitute for the loss of pyruvate kinase in some bacteria and is also an important virulence determinant inBrucella, a phenotypic analysis ofB. abortus2308 and isogenicpykM,ppdK, andpykM ppdKmutants indicates that PykM and PpdK make distinctly different contributions to carbon metabolism and virulence in these bacteria.IMPORTANCEMn plays a critical role in the physiology and virulence ofBrucellastrains, and the results presented here suggest that one of the important roles that the high-affinity Mn importer MntH plays in the pathogenesis of these strains is supporting the function of the Mn-dependent kinase PykM. A better understanding of how the brucellae adapt their physiology and metabolism to sustain their intracellular persistence in host macrophages will provide knowledge that can be used to design improved strategies for preventing and treating brucellosis, a disease that has a significant impact on both the veterinary and public health communities worldwide.


Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 290-299 ◽  
Author(s):  
Veeraraghavan Usha ◽  
Sudagar S. Gurcha ◽  
Andrew L. Lovering ◽  
Adrian J. Lloyd ◽  
Athina Papaemmanouil ◽  
...  

In contrast with most bacteria, which harbour a single inosine monophosphate dehydrogenase (IMPDH) gene, the genomic sequence of Mycobacterium tuberculosis H37Rv predicts three genes encoding IMPDH: guaB1, guaB2 and guaB3. These three genes were cloned and expressed in Escherichia coli to evaluate functional IMPDH activity. Purified recombinant Mt-GuaB2, which uses inosine monophosphate as a substrate, was identified as the only active GuaB orthologue in M. tuberculosis and showed optimal activity at pH 8.5 and 37 °C. Mt-GuaB2 was inhibited significantly in vitro by a panel of diphenyl urea-based derivatives, which were also potent anti-mycobacterial agents against M. tuberculosis and Mycobacterium smegmatis, with MICs in the range of 0.2–0.5 μg ml−1. When Mt-GuaB2 was overexpressed on a plasmid in trans in M. smegmatis, a diphenyl urea analogue showed a 16-fold increase in MIC. Interestingly, when Mt-GuaB orthologues (Mt-GuaB1 and 3) were also overexpressed on a plasmid in trans in M. smegmatis, they also conferred resistance, suggesting that although these Mt-GuaB orthologues were inactive in vitro, they presumably titrate the effect of the inhibitory properties of the active compounds in vivo.


2005 ◽  
Vol 79 (4) ◽  
pp. 2171-2190 ◽  
Author(s):  
Almira Punjabi ◽  
Paula Traktman

ABSTRACT The vaccinia virus F10 protein is one of two virally encoded protein kinases. A phenotypic analysis of infections involving a tetracycline-inducible recombinant (vΔiF10) indicated that F10 is involved in the early stages of virion morphogenesis, as previously reported for the mutants ts28 and ts15. The proteins encoded by ts28 and ts15 have primary defects in enzymatic activity and thermostability, respectively. Using a transient complementation assay, we demonstrated that the enzymatic activity of F10 is essential for its biological function and that both its enzymatic and biological functions depend upon N-terminal sequences that precede the catalytic domain. An execution point analysis indicated that in addition to its role at the onset of morphogenesis, F10 is also required at later stages, when membrane crescents surround virosomal contents and develop into immature virions. The F10 protein is phosphorylated in vivo, appears to be tightly associated with intracellular membranes, and can bind to specific phosphoinositides in vitro. When F10 is repressed or impaired, the phosphorylation of several cellular and viral proteins appears to increase in intensity, suggesting that F10 may normally intersect with cellular signaling cascades via the activation of a phosphatase or the inhibition of another kinase. These cascades may drive the F10-induced remodeling of membranes that accompanies virion biogenesis. Upon the release of ts28-infected cultures from a 40°C-induced block, a synchronous resumption of morphogenesis that culminates in the production of infectious virus can be observed. The pharmacological agents H89 and cerulenin, which are inhibitors of endoplasmic reticulum exit site formation and de novo lipid synthesis, respectively, block this recovery.


2015 ◽  
Vol 197 (17) ◽  
pp. 2821-2830 ◽  
Author(s):  
Jannell V. Bazurto ◽  
Nicholas J. Heitman ◽  
Diana M. Downs

ABSTRACTInSalmonella enterica, the thiamine biosynthetic intermediate 5-aminoimidazole ribotide (AIR) can be synthesizedde novoindependently of the early purine biosynthetic reactions. This secondary route to AIR synthesis is dependent on (i) 5-amino-4-imidazolecarboxamide ribotide (AICAR) accumulation, (ii) a functional phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase (PurC; EC 6.3.2.6), and (iii) methionine and lysine in the growth medium. Studies presented here show that AICAR is a direct precursor to AIRin vivo. PurC-dependent conversion of AICAR to AIR was recreatedin vitro. Physiological studies showed that exogenous nutrients (e.g., methionine and lysine) antagonize the inhibitory effects of AICAR on the ThiC reaction and decreased the cellular thiamine requirement. Finally, genetic results identified multiple loci that impacted the effect of AICAR on thiamine synthesis and implicated cellular aspartate levels in AICAR-dependent AIR synthesis. Together, the data here clarify the mechanism that allows conditional growth of a strain lacking the first five biosynthetic enzymes, and they provide additional insights into the complexity of the metabolic network and its plasticity.IMPORTANCEIn bacteria, the pyrimidine moiety of thiamine is derived from aminoimidazole ribotide (AIR), an intermediate in purine biosynthesis. A previous study described conditions under which AIR synthesis is independent of purine biosynthesis. This work is an extension of that previous study and describes a new synthetic pathway to thiamine that depends on a novel thiamine precursor and a secondary activity of the biosynthetic enzyme PurC. These findings provide mechanistic details of redundancy in the synthesis of a metabolite that is essential for nucleotide and coenzyme biosynthesis. Metabolic modifications that allow the new pathway to function or enhance it are also described.


Sign in / Sign up

Export Citation Format

Share Document