Genotypic variation in carbon isotope discrimination and gas exchange of ponderosa pine seedlings under two levels of water stress

2000 ◽  
Vol 30 (10) ◽  
pp. 1581-1590 ◽  
Author(s):  
J Miguel Olivas-García ◽  
Bert M Cregg ◽  
Thomas C Hennessey

As part of a program to select ponderosa pine (Pinus ponderosa Dougl. ex Laws.) genotypes for improved drought tolerance, we examined physiological and morphological characteristics of 12 half-sib families of ponderosa pine from four seed sources; New Mexico, South Dakota, Nebraska, and Wyoming. We analyzed genetic variation in carbon isotope discrimination (Δ), photosynthetic gas exchange, needle morphology, and growth of 2-year-old seedlings from the four seed sources grown under two levels of moisture availability. To gain a better understanding of within-provenance variation and identify opportunities to refine selection strategies, we also examined family within seed source variation in the traits. Water stress significantly (P < 0.05) reduced net photosynthesis (A), needle conductance to water vapor (gwv), carbon isotope discrimination (Δ), and growth of the seedlings as compared to well-watered seedlings. However, instantaneous water use efficiency (A/gwv) did not differ between water treatments. Seedlings from New Mexico had significantly lower gwv and higher A/gwv than seedlings from the other sources. Carbon isotope discrimination was lowest for seedlings from New Mexico and Nebraska. Families within seed sources varied significantly in A, gwv, stomatal density, needle length, height increment, and Δ. Carbon isotope discrimination was significantly correlated with gwv but not with A, supporting results from mature trees suggesting that variation in Δ in ponderosa pine is more related to gwv than to A. Seed source × water treatment interactions were not observed for any of the traits analyzed. These results support our previous assertion that genotype × environment interaction in Δ of mature ponderosa pine trees from these sources grown in Nebraska and Oklahoma was related to factors other than moisture availability.

2000 ◽  
Vol 30 (3) ◽  
pp. 428-439 ◽  
Author(s):  
Bert M Cregg ◽  
J Miguel Olivas-García ◽  
Thomas C Hennessey

We analyzed genotypic variation in carbon isotope discrimination (Δ), photosynthetic gas exchange, and needle morphology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) trees from four seed sources growing in two 26-year-old provenance plantings near Plattsmouth, Neb., and Norman, Okla. The populations studied were from South Dakota, New Mexico, Wyoming, and Nebraska. Net photosynthesis (A) and needle conductance to water vapor (gwv), were measured during the growing season of 1994. Specific leaf area, stomatal density, and Δ were analyzed in needles grown from 1991 to 1994. The southernmost source (New Mexico) had the highest intrinsic water-use efficiency (A/gwv) among the sources studied. Carbon isotope discrimination was correlated with growth (r = -0.81, P < 0.05), A/gwv (r < -0.54, P < 0.001), and gwv (r > 0.46, P < 0.05) but not A. Variation in Δ was significant among seed sources and years (P < 0.001). We observed a strong genotype × environment interaction in Δ resulting from geographic location but not moisture availability within locations. We hypothesize that the genotype × environment interaction is related to variation in growth phenology among the seed sources. Improving water-use efficiency or growth of ponderosa pine via Δ will require an understanding in genotypic variation in growth rhythms.


2001 ◽  
Vol 37 (2) ◽  
pp. 241-252 ◽  
Author(s):  
J. I. FAHL ◽  
M. L. C. CARELLI ◽  
H. C. MENEZES ◽  
P. B. GALLO ◽  
P. C. O. TRIVELIN

Gas exchange, leaf carbon isotope discrimination, growth, yield and beverage quality were evaluated for two Coffea arabica cultivars (Catuai and Mundo Novo), grafted on to C. canephora and C. congensis progenies growing in open fields. During the years 1994 to 1997, grafting resulted in an average increase in bean yield of 151 and 89% for Catuai and Mundo Novo respectively. As analysed by sensory analyses and by the ratio between the mono-isomers and di-isomers of caffeoylquinic acid, beverage quality of the C. arabica was not altered by grafting. Shoot growth was significantly greater in grafted plants, showing an increase of 52% in total leaf area compared with the non-grafted plants. Under conditions of water excess in the soil there was little difference in the transpiration and stomatal conductance rates between the grafted and non-grafted plants, but the net photosynthesis was higher in grafted plants. With an accentuated water deficit in the soil in the dry period, the grafted plants showed significantly higher transpiration and stomatal conductance rates than the non-grafted plants, and similar values to those of C. canephora. Carbon isotope discrimination was greater in the grafted plants, suggesting greater root hydraulic conductance. The results suggest that the better performance of the grafted plants during the dry period was due to the greater capacity of the root system of C. canephora to provide water to the shoot thereby maintaining greater gas exchange in the leaves and consequently a greater carbon gain.


Sign in / Sign up

Export Citation Format

Share Document