Vegetation management and site preparation effects on 13C isotopic composition in planted white spruce

2001 ◽  
Vol 31 (6) ◽  
pp. 1093-1097 ◽  
Author(s):  
Thomas E Staples ◽  
Ken CJ Van Rees ◽  
J Diane Knight ◽  
C van Kessel

Moisture availability is the factor that most commonly influences the discrimination against 13C fixation (Δ) by C3 plants. Therefore, by changing the availability of moisture by way of controlling competing vegetation, Δ in white spruce (Picea glauca (Moench) Voss) seedlings should be affected. The objective of this study was to determine the influence of manual brushing on Δ in white spruce seedlings planted in disc-trenched and control (i.e., no site preparation) microsites. The effects of site preparation and vegetation management on soil moisture, photosynthetically active radiation (PAR), and Δ in white spruce seedlings were evaluated over three growing seasons. Vegetation management increased the amount of PAR reaching seedlings in the control and disc-trenched treatments by removing the shading by native vegetation around each seedling. It appears that the increase in PAR reaching seedlings decreased Δ by increasing the photosynthetic consumption of CO2. Differences in soil available moisture (up to 22%) between control and disc-trenched treatments were not reflected in Δ values, contrary to our initial hypothesis. This may indicate that the site was not moisture limiting. Also, these results underline the complexity and difficulty of determining the controlling mechanisms by which Δ is affected.

1995 ◽  
Vol 71 (5) ◽  
pp. 633-638 ◽  
Author(s):  
R. F. Sutton ◽  
T. P. Weldon

Five-year results of a study to evaluate the relative effectiveness of nine silvicultural treatments for establishing plantations of white spruce (Picea glauca [Moench] Voss) in boreal Ontario mixed-wood are presented. The experimental design provided three levels of mechanical site preparation (none, disk trenching, and toothed-blading) in all combinations with three kinds of chemical weed control (none, Velpar L© at the time of planting, and Vision© during the second growing season). A randomized block experiment using 0.8-ha plots and two replications was established in Oates Twp. in 1985 and repeated in adjacent Oswald Twp. in 1986. Bareroot white spruce was planted throughout. Four 25-tree sub-plots, located systematically from a random start, were established in each plot. White spruce performance was monitored for five years. Fifth-year survival rates averaged 34% and 84% without and with mechanical site preparation, respectively. Mean total heights after five growing seasons differed significantly (P < 0.01) by category of mechanical site preparation: teeth > trencher > none. Other criteria of performance showed the same pattern. Because of operational exigencies, the herbicide treatments were not applied as scheduled, which might account for the apparent ineffectiveness of those treatments in the particular circumstances of this study. Key words: Site preparation, disk trencher, Young's teeth, herbicides


2003 ◽  
Vol 79 (1) ◽  
pp. 127-131
Author(s):  
R F Sutton ◽  
T P Weldon

An experiment to investigate techniques for establishing white spruce (Picea glauca [Moench] Voss) in boreal Ontario mixedwood was begun in 1985 in Oates Twp. Eight 25-tree plots were established in each of nine treatments: three mechanical site preparation treatments (none, disk- trenching, and toothed-blading) in combination with three kinds of chemical weed control (none, Velpar L® at the time of planting, and Vision® during the second growing season). The experiment was repeated the following year in the adjacent township of Oswald. The mechanical treatments were applied as planned, but the herbicide treatments deviated somewhat from the plan. Fifth-year results were reported in this journal in 1995. In the eighth growing season, a ground-spray release treatment with Vision® was applied to four randomly selected 25-tree plots in each original treatment. Performance of white spruce after 13 growing seasons was significantly influenced by site preparation: survival averaged 65 and 79% without release in the blading and trenching treatments, respectively, and 22% in the untreated control; with release, survival averaged 74 and 80% in the blading and trenching treatments, respectively, and 24% in the untreated control. Growth was greatest in the bladed treatment, poorest by far in the untreated control. The ineffectiveness of herbicides in these experiments is surprising in view of successes elsewhere. The modest response to release was significant for 13th -year increment. Key words: site preparation, toothed blading, trenching, release


2000 ◽  
Vol 15 (4) ◽  
pp. 177-182 ◽  
Author(s):  
James D. Stewart ◽  
Simon M. Landhäusser ◽  
Kenneth J. Stadt ◽  
Victor J. Lieffers

Abstract This study investigated the establishment and survival of naturally and artificially seeded white spruce (Picea glauca), as well as three sizes of planted white spruce stock, on different types of scarification beneath mature aspen (Populus tremuloides) in northern Alberta. White spruce seed rain, natural and hand-seeded regeneration establishment and survival, and understory vegetation response were monitored for 4 yr on scarified strips (light blading, heavy blading, and ridged) and on undisturbed controls. Despite a heavy seed rain in 1993, seedling establishment on control plots was almost nil. On scarified plots, the number of seeds required to produce a live seedling after 3 growing seasons ranged from 15 to 37 and up to 68 in one site. Most mortality occurred during the summer. Germination rate on the hand-seeded plots ranged from 19 to 28% on the scarified strips. There was no significant difference in survival from seed (15%) after three growing seasons among the three scarification treatments. Survival of planted stock was 98% on scarified strips and 96% on control strips. Diameter growth was least on control plots but was not significantly different among the scarified treatments. In contrast, height increment was greatest on the light blading treatment and differed little among the other two treatments and control. These results suggest that spruce regeneration in aspen forests can be promoted by scarification or underplanting. West. J. Appl. For. 15(4):177–182.


2011 ◽  
Vol 261 (3) ◽  
pp. 440-446 ◽  
Author(s):  
Brian Milakovsky ◽  
Brent R. Frey ◽  
Mark S. Ashton ◽  
Bruce C. Larson ◽  
Oswald J. Schmitz

2008 ◽  
Vol 38 (7) ◽  
pp. 1817-1828 ◽  
Author(s):  
Cosmin D. Man ◽  
Philip G. Comeau ◽  
Douglas G. Pitt

The influence of aspen ( Populus tremuloides Michx.) and herbaceous (forb and grass) vegetation on resource availability and white spruce ( Picea glauca (Moench) Voss) growth were examined as part of a long-term experiment established in 2002 near Whitecourt, Alberta, Canada. During the 2005 growing season, we examined the effects of herbicide treatments designed to control only woody (triclopyr ester) or both woody and herbaceous (glyphosate) vegetation on leaf area index (LAI) of both the woody and herbaceous components and relationships among LAI and light, soil moisture, air temperature, soil temperature, nitrogen availability, and spruce growth. Treatments reduced LAI and increased light, soil nitrogen availability, and white spruce growth. There were no apparent effects of the treatments on soil moisture in 2005. Both the woody and herb–grass layers appear to be competing for light and soil nitrogen in this young plantation. Controlling only woody vegetation resulted in an increase in herbaceous and total LAI (dominated by the grass Calamagrostis canadensis (Michx.) Beauv.). Spot treatment, involving control of vegetation within a 2 m radius of spruce seedlings while leaving 1 m of untreated ground between treated spots, may be a promising alternative to classical broadcast treatments for establishing spruce in a mixedwood stand. Spot treatments provided good growing conditions and reduced exposure of spruce seedlings to summer and winter frost injury during the first 3 years after planting.


2011 ◽  
Vol 41 (4) ◽  
pp. 793-809 ◽  
Author(s):  
Andrew Youngblood ◽  
Elizabeth Cole ◽  
Michael Newton

To identify suitable methods for reforestation, we evaluated the interacting effects of past disturbance, stock types, and site preparation treatments on white spruce (Picea glauca (Moench) Voss) seedling survival and growth across a range of sites in Alaska. Replicated experiments were established in five regions. At each site, two complete installations differed in time since disturbance: “new” units were harvested immediately before spring planting and “old” units were harvested at least 3 years before planting. We compared mechanical scarification before planting, broadcast herbicide application during the fall before planting, and no site preparation with 1-year-old container-grown seedlings from two sources, 2-year-old bare-root transplants from two sources, and 3-year-old bare-root transplants. Seedlings were followed for 11 years on most sites. Based on meta-analyses, seedling survival increased 10% with herbicide application and 15% with mechanical scarification compared with no site preparation. Scarification and herbicide application increased seedling height by about 28% and 35%, respectively, and increased seedling volume by about 86% and 195%, respectively, compared with no site preparation. Soil temperature did not differ among site preparation methods after the first 7 years. Results suggest that white spruce stands may be successfully restored through a combination of vegetation control and use of quality planting stock.


1999 ◽  
Vol 29 (7) ◽  
pp. 993-1001 ◽  
Author(s):  
E C Cole ◽  
M Newton ◽  
A Youngblood

The current spruce bark beetle (Dendroctonus rufipennis Kirby) epidemic in interior Alaska is leaving large expanses of dead spruce with little spruce regeneration. Many of these areas are habitat for moose (Alces alces). To establish spruce regeneration and improve browse production for moose, paper birch (Betula papyrifera Marsh), willow (Salix spp.), and three stocktypes (plug+1 bareroot, and 1+0 plugs from two nurseries) of white spruce (Picea glauca (Moench) Voss) were planted in freshly cutover areas on Fort Richardson, near Anchorage. Four vegetation-management treatments were compared: broadcast site preparation with herbicides, banded site preparation with herbicides, mechanical scarification, and untreated control. Spruce seedlings had the greatest growth in the broadcast site preparation treatment (p < 0.01). Stocktype was the most important factor in spruce growth, with bareroot transplant seedlings being the tallest and largest 5 years after planting (p < 0.001). In the first 3 years, relative stem volume growth was greater for plug seedlings than for bareroot seedlings (p < 0.001). By year 4, relative growth rates were similar among all stocktypes. Treatment effects for paper birch and willow were confounded by moose browsing. Results indicate spruce can be regenerated and moose browse enhanced simultaneously in forests in interior Alaska.


2019 ◽  
Vol 49 (3) ◽  
pp. 270-280 ◽  
Author(s):  
Victor J. Lieffers ◽  
Derek Sidders ◽  
Tim Keddy ◽  
Kevin A. Solarik ◽  
Peter Blenis

Survival and growth of planted white spruce (Picea glauca (Moench) Voss) were assessed at year 15 in boreal mixedwood stands of northern Alberta, Canada, in stands that were deciduous-dominated prior to logging or were conifer-dominated. Three overstory retention levels (0%, 50%, and 75% retention) and four site preparation treatments (mound, high speed mix, scalp, and no treatment) were evaluated. In deciduous-dominated stands, planted spruce performed best in the 50% retention; here, stem volume was at least double that of any other retention treatment after 15 years. In contrast, spruce had reduced growth in coniferous-dominated stands in both 50% and 75% retention treatments compared with the 0% retention. Survival of planted spruce was unaffected by level of retention, but survival was lower in coniferous-dominated stands than in deciduous-dominated stands; in the coniferous-dominated stands, survival was better with mounding and mixing and lowest with scalp treatments. All height variables tended to be greater in the mix and mound site preparation treatments. Finally, the best estimates of future total growth (regenerated spruce and deciduous combined) in the coniferous-dominated stands were in the clearcut treatment. In terms of regenerated spruce growth, the best estimates occurred in the deciduous-dominated – 50% retention stand planted with soil mixing–mounding treatments, where projected growth of spruce was comparable with that of open-grown and tended stands in Alberta’s boreal forests.


2008 ◽  
Vol 38 (7) ◽  
pp. 2072-2079 ◽  
Author(s):  
Lance W. Lazaruk ◽  
S. Ellen Macdonald ◽  
Gavin Kernaghan

We characterized the ectomycorrhizae (ECM) of planted white spruce ( Picea glauca (Moench) Voss) seedlings as affected by mechanical site preparation (MSP) of clear-cut conifer-dominated boreal mixedwood forest. Relative abundance, richness, and composition of the ECM community were compared among untreated control, mixed, mounded, and scalped site preparation treatments. On >11 000 root tips, we observed 16 ECM morphotypes. Those common to the nursery in which the seedlings were raised were most abundant ( Thelephora americana , Wilcoxina -like (E-strain), Amphinema byssoides , Phialocephala -like (MRA)). Seedlings in the untreated controls had lower abundances of these, but higher abundances of other ECM, which were not present in the nursery of origin but were indigenous to these forest stands. In terms of ECM composition, the “mixed” treatment was most similar to the untreated control, while the “scalped” and “mound” treatments showed significantly different ECM communities than the controls. Our results suggest that MSP may facilitate continued dominance by ECM that establish on seedlings in the nursery while slowing the natural succession towards the natural forest ECM. MSP treatments that leave some surface organic matter relatively intact may impact ECM less than those that remove or bury the organic layer.


1999 ◽  
Vol 29 (4) ◽  
pp. 413-423 ◽  
Author(s):  
R V Densmore ◽  
G P Juday ◽  
J C Zasada

Site-preparation and regeneration methods for white spruce (Picea glauca (Moench) Voss) were tested near Fairbanks, Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification. Survival of container-grown planted seedlings stabilized after 3 years at 93% with scarification and at 76% without scarification. Broadcast seeding was also successful, with one or more seedlings on 80% of the scarified 6-m2 subplots and on 60% of the unscarified subplots after 12 years. Natural regeneration after 12 years exceeded expectations, with seedlings on 50% of the 6-m2 subplots 150 m from a seed source and on 28% of the subplots 230 m from a seed source. After 5 years, 37% of the scarified unsheltered seed spots and 52% of the scarified seed spots with cone shelters had one or more seedlings, but only 16% of the unscarified seed spots had seedlings, with and without funnel shelters. Growth rates for all seedlings were higher than on similar unburned sites. The results show positive effects of burning in interior Alaska, and suggest planting seedlings, broadcast seeding, and natural seedfall, alone or in combination, as viable options for similar sites.


Sign in / Sign up

Export Citation Format

Share Document