Regeneration alternatives for upland white spruce after burning and logging in interior Alaska

1999 ◽  
Vol 29 (4) ◽  
pp. 413-423 ◽  
Author(s):  
R V Densmore ◽  
G P Juday ◽  
J C Zasada

Site-preparation and regeneration methods for white spruce (Picea glauca (Moench) Voss) were tested near Fairbanks, Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification. Survival of container-grown planted seedlings stabilized after 3 years at 93% with scarification and at 76% without scarification. Broadcast seeding was also successful, with one or more seedlings on 80% of the scarified 6-m2 subplots and on 60% of the unscarified subplots after 12 years. Natural regeneration after 12 years exceeded expectations, with seedlings on 50% of the 6-m2 subplots 150 m from a seed source and on 28% of the subplots 230 m from a seed source. After 5 years, 37% of the scarified unsheltered seed spots and 52% of the scarified seed spots with cone shelters had one or more seedlings, but only 16% of the unscarified seed spots had seedlings, with and without funnel shelters. Growth rates for all seedlings were higher than on similar unburned sites. The results show positive effects of burning in interior Alaska, and suggest planting seedlings, broadcast seeding, and natural seedfall, alone or in combination, as viable options for similar sites.

1999 ◽  
Vol 29 (7) ◽  
pp. 993-1001 ◽  
Author(s):  
E C Cole ◽  
M Newton ◽  
A Youngblood

The current spruce bark beetle (Dendroctonus rufipennis Kirby) epidemic in interior Alaska is leaving large expanses of dead spruce with little spruce regeneration. Many of these areas are habitat for moose (Alces alces). To establish spruce regeneration and improve browse production for moose, paper birch (Betula papyrifera Marsh), willow (Salix spp.), and three stocktypes (plug+1 bareroot, and 1+0 plugs from two nurseries) of white spruce (Picea glauca (Moench) Voss) were planted in freshly cutover areas on Fort Richardson, near Anchorage. Four vegetation-management treatments were compared: broadcast site preparation with herbicides, banded site preparation with herbicides, mechanical scarification, and untreated control. Spruce seedlings had the greatest growth in the broadcast site preparation treatment (p < 0.01). Stocktype was the most important factor in spruce growth, with bareroot transplant seedlings being the tallest and largest 5 years after planting (p < 0.001). In the first 3 years, relative stem volume growth was greater for plug seedlings than for bareroot seedlings (p < 0.001). By year 4, relative growth rates were similar among all stocktypes. Treatment effects for paper birch and willow were confounded by moose browsing. Results indicate spruce can be regenerated and moose browse enhanced simultaneously in forests in interior Alaska.


2018 ◽  
Vol 48 (4) ◽  
pp. 324-332 ◽  
Author(s):  
Nicola A. Kokkonen ◽  
S. Ellen Macdonald ◽  
Ian Curran ◽  
Simon M. Landhäusser ◽  
Victor J. Lieffers

Given a seed source, the quality of available substrates is a key factor in determining the success of white spruce (Picea glauca (Moench) Voss) natural regeneration. We examined the influence of substrate and competing vegetation on survival and growth of natural regeneration of white spruce up to 4 years following harvesting in deciduous-dominated upland boreal mixedwood sites. Feather moss, thick soil surface organic layers, litter, and solid wood were poor substrates for establishment. Early successional mosses establishing on mineral soil, thin organics, and rotten wood were generally favourable microsites but were not highly available on postharvest sites. Mineral soil substrates were not as suitable as expected, likely because on a postlogged site, they are associated with unfavourable environmental characteristics (e.g., low nutrient availability, exposure). There was some evidence that survival and growth of seedlings were improved by surrounding vegetation in the first years, but heavy competing vegetation had a negative impact on older seedlings. Burial by aspen litter greatly increased seedling mortality, especially when combined with a brief period of submergence due to heavy spring snowmelt. The results provide insight into conditions under which natural regeneration could be an option for establishing white spruce following harvesting of deciduous-dominated boreal mixedwood forests.


2001 ◽  
Vol 31 (6) ◽  
pp. 1038-1045 ◽  
Author(s):  
Jessica J Roberts ◽  
Janusz J Zwiazek

The study examined the effects of different relative humidity conditions at germination, early growth, and following cold storage on morphological and physiological characteristics of white spruce (Picea glauca (Moench) Voss) seedlings. Seedlings that were grown for 18 weeks following seed germination at the lower, 30% RH (RHinitial) treatments were shorter and had smaller stem diameters, shorter needles with more epicuticular wax, and a greater density of needles per centimetre stem, compared with the 80% RHinitial seedlings. After 18 weeks of growth under 30, 50, and 80% RH, the seedlings were hardened off, stored for 8 weeks at 3°C and planted in pots in growth chambers under 42 and 74% relative humidity (RHsubsequent). Under 74% RHsubsequent conditions, the lower RHinitial seedlings flushed sooner and had higher growth rates compared with the higher RHinitial seedlings. When the higher RHinitial seedlings were placed under 42% RHsubsequent conditions, their bud flush was delayed, and subsequent growth rates were lower compared with the lower RHinitial seedlings. When measured at 40% RH, seedlings subjected to lower RHinitial had higher net assimilation rates and stomatal conductance compared with the seedlings acclimated to higher RHinitial humidity. It was concluded that the humidity conditions present during early seedling growth following germination significantly affect their morphological and physiological characteristics during the second growth season.


2012 ◽  
Vol 42 (3) ◽  
pp. 561-573 ◽  
Author(s):  
Glenn Patrick Juday ◽  
Claire Alix

This paper calibrates climate controls over radial growth of floodplain white spruce ( Picea glauca (Moench) Voss) and examines whether growth in these populations responds similarly to climate as upland trees in Interior Alaska. Floodplain white spruce trees hold previously unrecognized potential for long-term climate reconstruction because they are the source of driftwood that becomes frozen in coastal deposits, where archeological timbers and beach logs represent well-preserved datable material. We compared ring width chronologies for 135 trees in six stands on the Yukon Flats and Tanana River with temperature and precipitation at Fairbanks from 1912–2001. Our sample contains a stable common signal representing a strong negative relationship between summer temperature and tree growth. We developed a floodplain temperature index (FPTI), which explains half of the variability of the composite chronology, and a supplemental precipitation index (SPI) based on correlation of monthly precipitation with the residual of the temperature-based prediction of growth. We then combined FPTI and SPI into a climate favorability index (CFI) in which above-normal precipitation partially compensates for temperature-induced drought reduction of growth and vice versa. CFI and growth have been particularly low since 1969. Our results provide a basis for building longer chronologies based on archeological wood and for projecting future growth.


1990 ◽  
Vol 7 (3) ◽  
pp. 121-123 ◽  
Author(s):  
Edmond C. Packee

Abstract Following hardwood removal from a mixed spruce-birch-aspen forest stand, portions of the stand were blade-scarified to encourage natural white spruce regeneration. Six years after treatment the number and height of white spruce seedlings were significantly greater on scarified than on unscarified plots. Whereas 100% of scarified sample plots contained five or more seedlings, 73% of unscarified plots contained no seedlings. Exposure of mineral soil and removal of grass competition are essential for the satisfactory natural regeneration of white spruce. Detailed regeneration surveys should not be considered for white spruce until seedlings are 15 cm tall, typically the fifth or sixth year after site preparation. North. J. Appl. For. 7:121-123, September 1990.


2003 ◽  
Vol 33 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Susan Peters ◽  
Stan Boutin ◽  
Ellen Macdonald

Predation of white spruce (Picea glauca (Moench) Voss) cones by red squirrels (Tamiasciurus hudsonicus Erxleben) was quantified in the mixedwood boreal forest of Alberta in cutblocks with seed tree retention and in adjacent uncut forest, during 3 years with varying levels of cone crop (1998, 1999, 2000). Percent cone loss was quantified by comparison of paired pre- and post-caching photographs of tree crowns. Cone loss from seed trees in cutblocks was significantly lower than from control trees in adjacent uncut forest (48.5 vs. 54.9%). Although the number of cones produced per tree declined by 42% and the percentage of trees producing cones declined by approximately 48% between 1998 and 2000, there was no corresponding increase in the percentage of cones harvested by squirrels. Percent cone loss was significantly lower from single seed trees in cutblocks, as compared with seed trees left in patches of more than 20 trees (33.4 vs. 50.5%). Cone predation significantly reduced the amount of seed available for natural regeneration using a seed tree system. Although blowdown may be reduced if seed trees are left in patches, leaving white spruce seed trees as singles in cutblocks may reduce the level of cone predation.


1995 ◽  
Vol 71 (5) ◽  
pp. 633-638 ◽  
Author(s):  
R. F. Sutton ◽  
T. P. Weldon

Five-year results of a study to evaluate the relative effectiveness of nine silvicultural treatments for establishing plantations of white spruce (Picea glauca [Moench] Voss) in boreal Ontario mixed-wood are presented. The experimental design provided three levels of mechanical site preparation (none, disk trenching, and toothed-blading) in all combinations with three kinds of chemical weed control (none, Velpar L© at the time of planting, and Vision© during the second growing season). A randomized block experiment using 0.8-ha plots and two replications was established in Oates Twp. in 1985 and repeated in adjacent Oswald Twp. in 1986. Bareroot white spruce was planted throughout. Four 25-tree sub-plots, located systematically from a random start, were established in each plot. White spruce performance was monitored for five years. Fifth-year survival rates averaged 34% and 84% without and with mechanical site preparation, respectively. Mean total heights after five growing seasons differed significantly (P < 0.01) by category of mechanical site preparation: teeth > trencher > none. Other criteria of performance showed the same pattern. Because of operational exigencies, the herbicide treatments were not applied as scheduled, which might account for the apparent ineffectiveness of those treatments in the particular circumstances of this study. Key words: Site preparation, disk trencher, Young's teeth, herbicides


1989 ◽  
Vol 19 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Alan J. Thomson ◽  
Robert G. McMinn

Growth of white spruce (Piceaglauca (Moench) Voss) and lodgepole pine (Pinuscontorta Dougl.) seedlings was studied on six installations, each containing different stock types and site-preparation treatments. Stock types included styroplugs from different cavity sizes, bare-root stock, and transplant stock; site preparations included no treatment, scalping, inverting, and mixing. Fertilizer was also used in combination with some of these treatments on some installations. Site-preparation treatments that gave some degree of vegetation control generally led to higher growth rates, but there was considerable variability among and within installations. The slope of the linear relationship of height versus age up to 10 years gave an estimate of early growth which was suitable for comparing treatments, whereas average height increment in a later measurement period gave a better estimate of growth for projection purposes. A normal distribution of growth rates around a mean for a particular stock type and site-preparation method was used in conjunction with height–dbh and crown width–dbh relationships to project growth of trees to crown closure, assuming different densities. The age at crown closure depended on both growth rate and density, and average size at crown closure depended primarily on density.


2011 ◽  
Vol 41 (4) ◽  
pp. 793-809 ◽  
Author(s):  
Andrew Youngblood ◽  
Elizabeth Cole ◽  
Michael Newton

To identify suitable methods for reforestation, we evaluated the interacting effects of past disturbance, stock types, and site preparation treatments on white spruce (Picea glauca (Moench) Voss) seedling survival and growth across a range of sites in Alaska. Replicated experiments were established in five regions. At each site, two complete installations differed in time since disturbance: “new” units were harvested immediately before spring planting and “old” units were harvested at least 3 years before planting. We compared mechanical scarification before planting, broadcast herbicide application during the fall before planting, and no site preparation with 1-year-old container-grown seedlings from two sources, 2-year-old bare-root transplants from two sources, and 3-year-old bare-root transplants. Seedlings were followed for 11 years on most sites. Based on meta-analyses, seedling survival increased 10% with herbicide application and 15% with mechanical scarification compared with no site preparation. Scarification and herbicide application increased seedling height by about 28% and 35%, respectively, and increased seedling volume by about 86% and 195%, respectively, compared with no site preparation. Soil temperature did not differ among site preparation methods after the first 7 years. Results suggest that white spruce stands may be successfully restored through a combination of vegetation control and use of quality planting stock.


2019 ◽  
Vol 49 (5) ◽  
pp. 463-470 ◽  
Author(s):  
Suzanne Brais ◽  
Brian D. Harvey ◽  
Arun K. Bose

Variable retention (VR) and partial cutting are both considered important silvicultural tools of natural disturbance or ecosystem based forest management approaches. Partial harvesting differs from VR in that post-treatment growth responses and stand regeneration are the primary objective rather than the maintenance of biodiversity. This partial cutting study is undertaken in mixed poplar (Populus spp.) – white spruce (Picea glauca (Moench) Voss) stands in the eastern Canadian boreal mixedwood forest. It compares, at the tree level, absolute growth rates (AGR) and relative growth rates (RGR) of basal area (BA) and stem survival; and at the stand level, it also compares absolute BA growth, mortality, and sapling density 10 years following treatment. The completely randomized experiment was established with four intensities of partial cutting (0, 50%, 65%, and 100% of poplar BA). All partial cutting intensities had a significant and similar positive effect on AGR of residual spruce stems. Complete poplar removal resulted not only in the highest increase in RGR of suppressed and intermediate spruce stems, but also in higher spruce mortality. Removal of 50% of the initial poplar stand BA provided the best trade-off between positive residual stem growth of spruce and poplar and limited post-treatment mortality.


Sign in / Sign up

Export Citation Format

Share Document