scholarly journals Effects of tree size and position on pipe model ratios in Scots pine

2005 ◽  
Vol 35 (6) ◽  
pp. 1294-1304 ◽  
Author(s):  
Frank Berninger ◽  
Lluis Coll ◽  
Petteri Vanninen ◽  
Annikki Mäkelä ◽  
Sari Palmroth ◽  
...  

We investigate how the foliage mass to wood area ratios depend on tree and stand characteristics of previously collected data from Scots pine (Pinus sylvestris L.). Our analysis allowed a separation of the relationship between stem and branch cross-sectional areas and the relationship between the branch cross-sectional area and foliage mass. We studied how these relationships varied within and between stands. The lowest site fertility class had a higher foliage mass to stem area ratio than better sites. The relative height of a tree in the stand (Φ) was the major factor that determined the variation in the relationship between the branch cross-sectional area and the stem cross-sectional area. Models based on absolute height or tree diameter were usually weaker. Models based on Φ were simpler, since no other variables were able to explain between-stand variation in the presence of Φ. We were able to predict changes in the branchiness of the tree but not in the foliage mass supported per unit of branch area.

1994 ◽  
Vol 24 (11) ◽  
pp. 2263-2268 ◽  
Author(s):  
Frank Berninger ◽  
Eero Nikinmaa

Foliage mass and wood cross-sectional area were measured at different points of branches and stems within the living crown of Scots pine (Pinussylvestris L.) trees from sample plots, representing wide geographical variation. The measurements were taken during the period of annual minimum foliage mass. The needle mass: branch cross-sectional area ratio, measured below the lowest living whorl of sub-branches, differed among measured points and was normally lower for the uppermost branches, but also decreased in the lower canopy. The decrease at the lower canopy was hypothesized to reflect an excess water transport capacity resulting from the senesced needles. The lower ratio in the uppermost branches might be explained by M.H. Zimmermann's hypothesis that the water supply of foliage close to the stem is preferred. A similar trend in the branch area: stem area ratio was observed along the stem. There seemed to be strong geographic variation in the ratio between the total cross-sectional area of branches of the crown measured and the stem cross-sectional area below the living crown. The branch area: stem area ratio was higher in the southern stands, whereas there was no clear trend for the needle area: branch area ratio. The results are discussed in relation to the hydraulic architecture of trees.


2020 ◽  
Vol 50 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Aleksi Lehtonen ◽  
Juha Heikkinen ◽  
Hans Petersson ◽  
Boris Ťupek ◽  
Eero Liski ◽  
...  

The pipe model approach was compared with foliage biomass models by using the cross-sectional area at the tree crown base for predicting foliage biomass of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). We evaluated the impacts of site type, fertilization, and climate on the relationship between foliage biomass and cross-sectional area at the tree crown base, referred as to the pipe model ratio. Our hypotheses were that (i) the pipe model approach is a more precise and accurate method for foliage prediction than the traditional biomass models and (ii) the pipe model ratio for foliage does not explicitly depend on any single environmental driver. Data used here consisted of felled trees from Finnish and Swedish biomass studies. These data were analyzed by linear mixed models with different covariates, and the uncertainties of different modelling approaches were evaluated. The pipe model outperformed other models for Scots pine but not for Norway spruce. Results showed larger pipe model ratios for Scots pine in herb-rich forests compared with those of trees in subxeric heath forest. Results from fertilized trees indicated that the addition of nitrogen temporarily increased foliage biomass.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gernot Seppel ◽  
Andreas Voss ◽  
Daniel J. H. Henderson ◽  
Simone Waldt ◽  
Bernhard Haller ◽  
...  

Abstract Background While supraspinatus atrophy can be described according to the system of Zanetti or Thomazeau there is still a lack of characterization of isolated subscapularis muscle atrophy. The aim of this study was to describe patterns of muscle atrophy following repair of isolated subscapularis (SSC) tendon. Methods Forty-nine control shoulder MRI scans, without rotator cuff pathology, atrophy or fatty infiltration, were prospectively evaluated and subscapularis diameters as well as cross sectional areas (complete and upper half) were assessed in a standardized oblique sagittal plane. Calculation of the ratio between the upper half of the cross sectional area (CSA) and the total CSA was performed. Eleven MRI scans of patients with subscapularis atrophy following isolated subscapularis tendon tears were analysed and cross sectional area ratio (upper half /total) determined. To guarantee reliable measurement of the CSA and its ratio, bony landmarks were also defined. All parameters were statistically compared for inter-rater reliability, reproducibility and capacity to quantify subscapularis atrophy. Results The mean age in the control group was 49.7 years (± 15.0). The mean cross sectional area (CSA) was 2367.0 mm2 (± 741.4) for the complete subscapularis muscle and 1048.2 mm2 (± 313.3) for the upper half, giving a mean ratio of 0.446 (± 0.046). In the subscapularis repair group the mean age was 56.7 years (± 9.3). With a mean cross sectional area of 1554.7 mm2 (± 419.9) for the complete and of 422.9 mm2 (± 173.6) for the upper half of the subscapularis muscle, giving a mean CSA ratio of 0.269 (± 0.065) which was seen to be significantly lower than that of the control group (p < 0.05). Conclusion Analysis of typical atrophy patterns of the subscapularis muscle demonstrates that the CSA ratio represents a reliable and reproducible assessment tool in quantifying subscapularis atrophy. We propose the classification of subscapularis atrophy as Stage I (mild atrophy) in case of reduction of the cross sectional area ratio < 0.4, Stage II (moderate atrophy) in case of < 0.35 and Stage III (severe atrophy) if < 0.3.


2015 ◽  
Vol 66 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Kate Hanneman ◽  
Paaladinesh Thavendiranathan ◽  
Elsie T. Nguyen ◽  
Hadas Moshonov ◽  
Rachel Wald ◽  
...  

Purpose To evaluate the value of cardiac magnetic resonance imaging (MRI)–based measurements of inferior vena cava (IVC) cross-sectional area in the diagnosis of pericardial constriction. Methods Patients who had undergone cardiac MRI for evaluation of clinically suspected pericardial constriction were identified retrospectively. The diagnosis of pericardial constriction was established by clinical history, echocardiography, cardiac catheterization, intraoperative findings, and/or histopathology. Cross-sectional areas of the suprahepatic IVC and descending aorta were measured on a single axial steady-state free-precession (SSFP) image at the level of the esophageal hiatus in end-systole. Logistic regression and receiver-operating curve (ROC) analyses were performed. Results Thirty-six patients were included; 50% (n = 18) had pericardial constriction. Mean age was 53.9 ± 15.3 years, and 72% (n = 26) were male. IVC area, ratio of IVC to aortic area, pericardial thickness, and presence of respirophasic septal shift were all significantly different between patients with constriction and those without ( P < .001 for all). IVC to aortic area ratio had the highest odds ratio for the prediction of constriction (1070, 95% confidence interval [8.0-143051], P = .005). ROC analysis illustrated that IVC to aortic area ratio discriminated between those with and without constriction with an area under the curve of 0.96 (95% confidence interval [0.91-1.00]). Conclusions In patients referred for cardiac MRI assessment of suspected pericardial constriction, measurement of suprahepatic IVC cross-sectional area may be useful in confirming the diagnosis of constriction when used in combination with other imaging findings, including pericardial thickness and respirophasic septal shift.


2016 ◽  
Vol 23 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Dunja Perić ◽  
Paul A. Bartley ◽  
Lawrence Davis ◽  
Ali Ulvi Uzer ◽  
Cahit Gürer

AbstractLignin is a coproduct of biofuel and paper industries, which exhibits binding qualities when mixed with water. Lignin is an ideal candidate for a sustainable stabilization of unpaved roads. To this end, an experimental program was devised and carried out to quantify effects of lignin on compaction and early age shear strength behaviors of sand. Samples were prepared by mixing a particular type of coproduct called calcium lignosulfonate (CaL) with sand and water. Based on the extensive analyses of six series of strength tests, it was found that a normalized cohesion increased with an increasing normalized areas ratio. Normalizations were carried out by dividing the cohesion and area ratio by gravimetric CaL content whereby the area ratio was obtained by dividing the portion of the cross-sectional area occupied with lignosulfonate-water (CaL-W) paste by the total cross-sectional area. While the increase in the normalized cohesion eventually leveled out, the cohesion peaked at 6% of CaL. Thus, sand-CaL-water (S-CaL-W) mixes sustained larger shear stresses than dry sand for a range of normal stresses below the limiting normal stress. Consequently, the early age behavior indicates that adding CaL-W to sand is clearly beneficial in the near-surface applications in dry sand.


2002 ◽  
Vol 282 (4) ◽  
pp. G683-G689 ◽  
Author(s):  
J. D. Barlow ◽  
H. Gregersen ◽  
D. G. Thompson

Current techniques used to investigate the mechanisms responsible for the sensory responses to distension of the human esophagus provide limited information because the degree of circumferential stretch required to determine tension can only be inferred. We used impedance planimetry to measure the cross-sectional area during esophageal distension to ascertain the degree of stretch and tension that initiated motor and sensory responses. Hyoscine- N-butyl bromide (HBB), a cholinergic muscarinic receptor blocker, was also used to alter esophageal tension during distension. Motor activity was initiated at a lower degree of stretch and tension than that which initiated sensory awareness; both increased directly with increasing distension. HBB reduced both esophageal motility and tension during distension without altering the relationship between sensation intensity and cross-sectional area. Esophageal stretch, rather than tension, thus appears to be the major factor influencing sensory responses to esophageal distension.


2019 ◽  
Vol 136 ◽  
pp. 05014
Author(s):  
Zhangyang Kang ◽  
Zhaoyang Lu ◽  
Xin Deng ◽  
Qiongqiong Yao

A numerical study of heat and mass transfer characteristics of a two-inlet PV/T air collector is performed. The influence of thermal characteristics and efficiency is investigated as the area ratios of inlet and outlet of the single channel with two inlets are changed. The design of the two-inlet PV/T air collector can avoid the poor heat transfer conditions of the single inlet PV/T air collector and improve the total photo-thermal efficiency. When the inlet/outlet cross-sectional area ratio is reduced, the inlet air from the second inlet enhances the convection heat transfer in the second duct and the temperature distribution is more uniform. As the cross-sectional area of the second inlet increase, the maximum heat exchange amount of the two-inlet PV/T air collector occurs between the inlet and outlet cross-sectional area ratio L=0.645 and L=0.562.


1990 ◽  
Vol 68 (1) ◽  
pp. 187-192 ◽  
Author(s):  
K. K. Kirchner ◽  
J. T. McBride

We have previously shown that airway cross-sectional area increases 15-20% after pneumonectomy in weanling ferrets by measuring bronchial casts. We have now reanalyzed these same casts to quantitate changes in airway length after pneumonectomy. In each cast the distance from each of 120 airways to the terminal bronchiole along its axial pathway was measured. The relationship between the logarithm of this distance and that of the fraction of the lobe subtended by an airway could be described by a quadratic equation with a correlation coefficient greater than 0.85. Subsegmental and more distal airways of postpneumonectomy animals were 33-47% longer than those of controls. Overall the main axial pathway of airways in the left lower lobes was 12% longer in operated animals, but this increase was primarily accounted for by an increase in the length of the more peripheral airways. Central airways were little if any longer in operated animals. After pneumonectomy in weanling ferrets, subsegmental and peripheral airway lengths increase to a greater degree than lung volume and airway cross-sectional area, whereas central airway lengths increase to a lesser extent if at all. The mechanisms responsible for this difference between central and intralobar compensatory airway growth are unknown.


Sign in / Sign up

Export Citation Format

Share Document