Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

2006 ◽  
Vol 36 (3) ◽  
pp. 565-576 ◽  
Author(s):  
Felipe G Sanchez ◽  
Allan E Tiarks ◽  
J Marty Kranabetter ◽  
Deborah S Page-Dumroese ◽  
Robert F Powers ◽  
...  

This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts) that are part of the Long-Term Soil Productivity (LTSP) network and were established over 5 years ago. The sites cover a broad range of soil types, climatic conditions, and tree species. Most sites showed increased soil C and N levels 5 years after study establishment; however, the rate and magnitude of the changes varied between sites. Organic matter removal, compaction, or competition control did not significantly affect soil C and N contents at any site, except for the Northern Rocky Mountain site, where competition control significantly affected soil C and N contents. The observation that, after 5 years, the soil C and N contents were not negatively affected by even the extreme treatments demonstrates the high resiliency of the soil, at least in the short term, to forest management perturbations.

2019 ◽  
Vol 28 (10) ◽  
pp. 814 ◽  
Author(s):  
Derek N. Pierson ◽  
Peter R. Robichaud ◽  
Charles C. Rhoades ◽  
Robert E. Brown

Erosion of soil carbon (C) and nitrogen (N) following severe wildfire may have deleterious effects on downstream resources and ecosystem recovery. Although C and N losses in combustion and runoff have been studied extensively, soil C and N transported by post-fire erosion has rarely been quantified in burned landscapes. To better understand the magnitude and temporal pattern of these losses, we analysed the C and N content of sediment collected in severely burned hillslopes and catchments across the western USA over the first 4 post-fire years. We also compared soil C and N losses from areas receiving common erosion-mitigation treatments and untreated, burned areas. The concentrations of C and N in the eroded material (0.23–0.98gCkg−1 and 0.01–0.04gNkg−1) were similar to those of mineral soils rather than organic soil horizons or combusted vegetation. Losses of eroded soil C and N were highly variable across sites, and were highest the first 2 years after fire. Cumulative erosional losses from untreated, burned areas ranged from 73 to 2253kgCha−1 and from 3.3 to 110kgNha−1 over 4 post-fire years. Post-fire erosion-mitigation treatments reduced C and N losses by up to 75% compared with untreated areas. Losses in post-fire erosion are estimated to be <10% of the total soil C and N combusted during severe wildfire and <10% of post-fire soil C and N stocks remaining in the upper 20cm of mineral soil. Although loss of soil C and N in post-fire erosion is unlikely to impair the productivity of recovering vegetation, export of C and N may influence downstream water quality and aquatic ecosystems.


2019 ◽  
Author(s):  
Adam F. A. Pellegrini ◽  
Sarah E. Hobbie ◽  
Peter B. Reich ◽  
Ari Jumpponen ◽  
E. N. Jack Brookshire ◽  
...  

AbstractFires shape the biogeochemistry and functioning of many ecosystems, but fire frequencies are changing across large areas of the globe. Frequent fires can change soil carbon (C) and nitrogen (N) storage through both “top-down” pathways, by altering inputs through shifting plant composition and biomass, and “bottom-up” ones, by altering losses through decomposition and turnover of soil organic matter. However, the relative importance of these different pathways and the degree to which they regulate ecosystem responses to decades of changing fire frequencies is uncertain. Here, we sampled soils and plant communities in four North American and African sites spanning tropical savanna, temperate coniferous savanna, temperate broadleaf savanna, and temperate coniferous forest that each contained multiple plots repeatedly burned for 33-61 years and nearby plots that were protected from fire over the same period. The sites varied markedly in temperature, precipitation, species composition, fire history and soil chemistry; thus they represent a broad test for the generality of fire impacts on biogeochemical cycling. For all four sites, bulk soil C and N by were 25-180% higher in unburned vs. frequently burned plots, with greater soil losses occurring in areas with greater declines in tree cover and biomass inputs into soils. Fire reduced the activity of soil extracellular enzymes that hydrolyze labile C and N from soil organic matter by two- to ten-fold, whereas tree cover was the predominant control on the oxidation of recalcitrant C compounds. C-acquisition enzyme activity tended to decline with decreasing soil N, suggesting that N losses may contribute to limited decomposition, buffering systems against increased losses of soil C with fire. In conclusion, variability in how fire alters soil C and N across ecosystems can be explained partly by fire-driven changes in tree cover and biomass, but the slower turnover of organic matter we observed may offset some of the reduction of C inputs from plants after fire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2139
Author(s):  
Junliang Zou ◽  
Bruce Osborne

The importance of labile soil carbon (C) and nitrogen (N) in soil biogeochemical processes is now well recognized. However, the quantification of labile soil C and N in soils and the assessment of their contribution to ecosystem C and N budgets is often constrained by limited information on spatial variability. To address this, we examined spatial variability in dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) in a Sitka spruce forest in central Ireland. The results showed moderate variations in the concentrations of DOC and DTN based on the mean, minimum, and maximum, as well as the coefficients of variation. Residual values of DOC and DTN were shown to have moderate spatial autocorrelations, and the nugget sill ratios were 0.09% and 0.10%, respectively. Distribution maps revealed that both DOC and DTN concentrations in the study area decreased from the southeast. The variability of both DOC and DTN increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. The cokriging technique performed better than the ordinary kriging for predictions of DOC and DTN, which are highly correlated. This study provides a statistically based assessment of spatial variations in DOC and DTN and identifies the sampling effort required for their accurate quantification, leading to improved assessments of forest ecosystem C and N budgets.


2021 ◽  
Vol 896 (1) ◽  
pp. 012022
Author(s):  
H A Umar ◽  
Endiyani ◽  
S Agustina ◽  
Irhami ◽  
C Anwar ◽  
...  

Abstract Research to find out how big the potential of soil carbon in agroforestry vegetation in Aceh Besar regency. This research was conducted on agroforestry vegetation on dry land in the Aceh Besar regency. Content carbon on the type of agroforestry land-use, two samples were taken each composite soil on depth 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-70 cm and 70-100. For the analysis of carbon content, activities are carried out in the soil laboratory and plants of the Faculty of Agriculture, Syiah Kuala University. The carbon content in agroforestry vegetation is quite high, and this can be described in the percentage of carbon which has a classification from high to very low. Soil depth 0-5 cm has a carbon percentage with a high classification value of 3.40 and at a depth of 30-70 cm has the lowest % C value of 0.35% with a very low classification. tends to increase soil C and N through increased root complementarity, lower underground competition.


Soil Research ◽  
2002 ◽  
Vol 40 (1) ◽  
pp. 149 ◽  
Author(s):  
R. Stenger ◽  
G. F. Barkle ◽  
C. P. Burgess

In a 6-month laboratory incubation study, we compared the net C and N mineralisation of the soil organic matter (SOM) of 3 pasture soils and the mineralisation of glucose-C in intact versus sieved/refilled soil cores. The main questions were whether the net C and N mineralisation differed between intact and sieved/refilled soil cores after a conditioning period of 4 weeks, and how much the C and N mineralisation of SOM differed among the similarly managed pasture soils. Apart from the net nitrogen mineralisation in one soil, there were no significant differences in cumulated mineralisation of C or N from SOM between the core types. In a fine-textured soil, net mineralisation of glucose-C differed significantly between core types, which was attributed to the different distribution of the amended glucose in intact and sieved/refilled cores. Net C and N mineralisation of SOM were closely correlated in the sieved/refilled cores, whereas no significant correlation was found in the intact cores. Expressing net C and N mineralisation as percentages of total soil C and N showed a more than 2-fold maximum difference between the soils in spite of similar long-term organic matter input. Subsequent studies should be done using more replicates and wider diameter, better controllable cores on ceramic plates. CO2, net nitrogen mineralisation (NNM), soil microbial biomass.


Soil Research ◽  
1996 ◽  
Vol 34 (6) ◽  
pp. 891 ◽  
Author(s):  
AJ Gijsman

An area of native savanna on an Oxisol in the Eastern Plains of Colombia was opened and sown to various rotations of grass or grass-legume pasture with rice. After 4.5 years, the soil was sampled for studying the effect of land conversion on soil aggregation and on the distribution of total and particulate soil organic matter across the aggregate size classes. The size distribution of undisturbed aggregates did not vary among treatments. Five different methods were used to measure wet aggregate stability (WAS). The choice of method affected the WAS average across treatments as well as the differences among treatments. The only consistent observation was the lower WAS under monocropped rice compared with the other treatments. Inclusion of a legume in a pasture hardly affected aggregate stability. In contrast to the WAS measurements, which were carried out with soil aggregates of 1-2 mm, wet sieving of whole-soil samples revealed additional differences among treatments: large macroaggregates (>2 mm) proved less stable under those treatments that involved soil disturbance through ploughing and harvesting. Total soil C and N content did not vary among treatments, despite considerable differences in plant production levels. The C concentration, but not the N concentration, declined with decreasing aggregate size. The distribution of whole-soil C and N content across aggregate size classes depended more on the amount of soil in a certain size class than on the size class's C or N concentration. Those treatments that involved frequent soil disturbance had a smaller fraction of large macroaggregates (>2 mm) and, as a consequence, less C and N in the large macroaggregate fraction. The particulate organic matter (POM) fraction accounted for only 6.2-8.5% of total soil carbon. The small size of this pool makes it unlikely that POM can serve in these Oxisols for estimating the amount of soil organic matter with medium turnover rate, as suggested by others.


2004 ◽  
Vol 34 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Bauhus ◽  
T Vor ◽  
N Bartsch ◽  
A Cowling

Despite the importance of gaps in the dynamics and management of many forest types, very little is known about the medium- to long-term soil C and N dynamics associated with this disturbance. This study was designed to test the hypothesis that gap creation and lime application, a routine measure in many European forests to ameliorate soil acidity, lead to accelerated litter decomposition and thus a reduction in the forest floor and soil C and N pools. Four gaps were created in 1989 in a mature European beech (Fagus sylvatica L.) forest on acid soil with a moder humus, and lime (3 t dolomite·ha–1) was applied to two of these and surrounding areas. Litter and fine-root decomposition was measured in 1992–1993 and 1996–1998 using litterbags. Forest floor (L, F, and H layers) and mineral soil (0–40 cm) C and N pools were determined in 1989 and 1997. Eight years following silvicultural treatments, there was no change in C and N over the entire forest soil profile including forest floor. Reductions in the F and H layers in limed gaps were compensated for by increases in soil C and N in the surface (0–10 cm) mineral soil. Decomposition of F litter was significantly accelerated in limed gaps, leading to the development of a mull–moder, whereas gap creation alone had no effect on mass loss of F material in litterbags. Gap size disturbances in this acid beech forest appear to have minimal influences on soil C and N stocks. However, when combined with liming, changes in the humus form and vertical distribution of soil C and N may occur.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paulina B. Ramírez ◽  
Francisco J. Calderón ◽  
Michelle Haddix ◽  
Emanuele Lugato ◽  
M. Francesca Cotrufo

Large-scale quantification of soil organic carbon (C) and nitrogen (N) stocks and their distribution between particulate (POM) and mineral-associated (MAOM) organic matter is deemed necessary to develop land management strategies to mitigate climate change and sustain food production. To this end, diffuse reflectance mid-infrared spectroscopy (MIR) coupled with partial least square (PLS) analysis has been proposed as a promising method because of its low labor and cost, high throughput and the potential to estimate multiple soil attributes. In this paper, we applied MIR spectroscopy to predict C and N content in bulk soils, and in POM and MAOM, as well as soil properties influencing soil C storage. A heterogeneous dataset including 349 topsoil samples were collected under different soil types, land use and climate conditions across the European Union and the United Kingdom. The samples were analyzed for various soil properties to determine the feasibility of developing MIR-based predictive calibrations. We obtained accurate predictions for total soil C and N content, MAOM C and N content, pH, clay, and sand (R2> 0.7; RPD>1.8). In contrast, POM C and N content were predicted with lower accuracies due to non-linear dependencies, suggesting the need for additional calibration across similar soils. Furthermore, the information provided by MIR spectroscopy was able to differentiate spectral bands and patterns across different C pools. The strength of the correlation between C pools, minerals, and C functional groups was land use-dependent, suggesting that the use of this approach for long-term soil C monitoring programs should use land-use specific calibrations.


Sign in / Sign up

Export Citation Format

Share Document