Drainage and agriculture impacts on fire frequency in a southern Illinois forested bottomland

2008 ◽  
Vol 38 (12) ◽  
pp. 2932-2941 ◽  
Author(s):  
John L. Nelson ◽  
Charles M. Ruffner ◽  
John W. Groninger ◽  
Ray A. Souter

Postsettlement (1909–2003) fire history of a forested bottomland in the Mississippi Embayment of southern Illinois, USA, was determined using fire-scar analysis. The study area is a forested bottomland hardwood site, with remnant pockets of the dominant presettlement bald cypress – tupelo (Taxodium–Nyssa) vegetation. Ditch drainage was installed in 1919, with agricultural clearing and abandonment varying throughout the early and mid-twentieth century. Commercial agricultural activities ceased after the site became part of a conservation area ca. 1950. The hydrology of the site was further modified in 1957 when it was inundated for waterfowl management. Both drainage and land clearing for agriculture were associated with increased fire frequency. Although drainage was a necessary precursor to agriculture across much of this landscape, land improvement played the stronger role in determining fire frequency. The mean fire interval for the study period (1895–1965) was 1.73 years, with a minimum of 1 year and a maximum of 15 years. This frequency contrasts with the complete fire exclusion that has prevailed in the area since 1965. These results have important implications for the maintenance and restoration of forested wetland ecosystems where the present fire regime differs dramatically from that under which the now-dominant forest vegetation developed.

2006 ◽  
Vol 36 (4) ◽  
pp. 855-867 ◽  
Author(s):  
Megan L Van Horne ◽  
Peter Z Fulé

Fire scars have been used to understand the historical role of fire in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) ecosystems, but sampling methods and interpretation of results have been criticized for being statistically invalid and biased and for leading to exaggerated estimates of fire frequency. We compared "targeted" sampling, random sampling, and grid-based sampling to a census of all 1479 fire-scarred trees in a 1 km2 study site in northern Arizona. Of these trees, 1246 were sufficiently intact to collect cross-sections; of these, 648 had fire scars that could be cross-dated to the year of occurrence in the 200-year analysis period. Given a sufficient sample size (approximately n ≥ 50), we concluded that all tested sampling methods resulted in accurate estimates of the census fire frequency, with mean fire intervals within 1 year of the census mean. We also assessed three analytical techniques: (1) fire intervals from individual trees, (2) the interval between the tree origin and the first scar, and (3) proportional filtering. "Bracketing" fire regime statistics to account for purported uncertainty associated with targeted sampling was not useful. Quantifying differences in sampling approaches cannot resolve all the limitations of fire-scar methods, but does strengthen interpretation of these data.


1998 ◽  
Vol 28 (5) ◽  
pp. 774-787 ◽  
Author(s):  
Colin J Long ◽  
Cathy Whitlock ◽  
Patrick J Bartlein ◽  
Sarah H Millspaugh

High-resolution analysis of macroscopic charcoal in sediment cores from Little Lake was used to reconstruct the fire history of the last 9000 years. Variations in sediment magnetism were examined to detect changes in allochthonous sedimentation associated with past fire occurrence. Fire intervals from ca. 9000 to 6850 calendar years BP averaged 110 ± 20 years, when the climate was warmer and drier than today and xerophytic vegetation dominated. From ca. 6850 to 2750 calendar years BP the mean fire interval lengthened to 160 ± 20 years in conjunction with the onset of cool humid conditions. Fire-sensitive species, such as Thuja plicata Donn ex D. Don, Tsuga heterophylla (Raf.) Sarg., and Picea sitchensis (Bong.) Carr., increased in abundance. At ca. 4000 calendar years BP, increases in allochthonous sedimentation increased the delivery of secondary charcoal to the site. From ca. 2750 calendar years BP to present, the mean fire interval increased to 230 ± 30 years as cool humid conditions and mesophytic taxa prevailed. The Little Lake record suggests that fire frequency has varied continuously on millennial time scales as a result of climate change and the present-day fire regime has been present for no more than 1000 years.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.


2003 ◽  
Vol 12 (4) ◽  
pp. 309 ◽  
Author(s):  
Robert E. Keane ◽  
Geoffrey J. Cary ◽  
Russell Parsons

Spatial depictions of fire regimes are indispensable to fire management because they portray important characteristics of wildland fire, such as severity, intensity, and pattern, across a landscape that serves as important reference for future treatment activities. However, spatially explicit fire regime maps are difficult and costly to create requiring extensive expertise in fire history sampling, multivariate statistics, remotely sensed image classification, fire behaviour and effects, fuel dynamics, landscape ecology, simulation modelling, and geographical information systems (GIS). This paper first compares three common strategies for predicting fire regimes (classification, empirical, and simulation) using a 51�000�ha landscape in the Selway-Bitterroot Wilderness Area of Montana, USA. Simulation modelling is identified as the best overall strategy with respect to developing temporally deep spatial fire patterns, but it has limitations. To illustrate these problems, we performed three simulation experiments using the LANDSUM spatial model to determine the relative importance of (1) simulation time span; (2) fire frequency parameters; and (3) fire size parameters on the simulation of landscape fire return interval. The model used to simulate fire regimes is also very important, so we compared two spatially explicit landscape fire succession models (LANDSUM and FIRESCAPE) to demonstrate differences between model predictions and limitations of each on a neutral landscape. FIRESCAPE was developed for simulating fire regimes in eucalypt forests of south-eastern Australia. Finally, challenges for future simulation and fire regime research are presented including field data, scale, fire regime variability, map obsolescence, and classification resolution.


2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.


2013 ◽  
Vol 22 (8) ◽  
pp. 1021 ◽  
Author(s):  
Calvin A. Farris ◽  
Christopher H. Baisan ◽  
Donald A. Falk ◽  
Megan L. Van Horne ◽  
Peter Z. Fulé ◽  
...  

Fire history researchers employ various forms of search-based sampling to target specimens that contain visible evidence of well preserved fire scars. Targeted sampling is considered to be the most efficient way to increase the completeness and length of the fire-scar record, but the accuracy of this method for estimating landscape-scale fire frequency parameters compared with probabilistic (i.e. systematic and random) sampling is poorly understood. In this study we compared metrics of temporal and spatial fire occurrence reconstructed independently from targeted and probabilistic fire-scar sampling to identify potential differences in parameter estimation in south-western ponderosa pine forests. Data were analysed for three case studies spanning a broad geographic range of ponderosa pine ecosystems across the US Southwest at multiple spatial scales: Centennial Forest in northern Arizona (100ha); Monument Canyon Research Natural Area (RNA) in central New Mexico (256ha); and Mica Mountain in southern Arizona (2780ha). We found that the percentage of available samples that recorded individual fire years (i.e. fire-scar synchrony) was correlated strongly between targeted and probabilistic datasets at all three study areas (r=0.85, 0.96 and 0.91 respectively). These strong positive correlations resulted predictably in similar estimates of commonly used statistical measures of fire frequency and cumulative area burned, including Mean Fire Return Interval (MFI) and Natural Fire Rotation (NFR). Consistent with theoretical expectations, targeted fire-scar sampling resulted in greater overall sampling efficiency and lower rates of sample attrition. Our findings demonstrate that targeted sampling in these systems can produce accurate estimates of landscape-scale fire frequency parameters relative to intensive probabilistic sampling.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wesley Brookes ◽  
Lori D. Daniels ◽  
Kelsey Copes-Gerbitz ◽  
Jennifer N. Baron ◽  
Allan L. Carroll

In the 2017 and 2018, 2.55 million hectares burned across British Columbia, Canada, including unanticipated large and high-severity fires in many dry forests. To transform forest and fire management to achieve resilience to future megafires requires improved understanding historical fire frequency, severity, and spatial patterns. Our dendroecological reconstructions of 35 plots in a 161-hectare study area in a dry Douglas-fir forest revealed historical fires that burned at a wide range of frequencies and severities at both the plot- and study-area scales. The 23 fires between 1619 and 1943 burned at intervals of 10–30 years, primarily at low- to moderate-severity that scarred trees but generated few cohorts. In contrast, current fire-free intervals of 70–180 years exceed historical maximum intervals. Of the six widespread fires from 1790 to 1905, the 1863 fire affected 86% of plots and was moderate in severity with patches of higher severity that generated cohorts at fine scales only. These results indicate the severity of fires varied at fine spatial scales, and offer little support for the common assertion that periodic, high-severity, stand-initiating events were a component of the mixed-severity fire regime in these forest types. Many studies consider fires in the late 1800s relatively severe because they generated new cohorts of trees, and thus, emphasize the importance of high-severity fires in a mixed-severity fire regime. In our study area, the most widespread and severe fire was not a stand-initiating fire. Rather, the post-1863 cohorts persisted due disruption of the fire regime in the twentieth century when land-use shifted from Indigenous fire stewardship and early European settler fires to fire exclusion and suppression. In absence of low- to moderate-severity fires, contemporary forests are dense with closed canopies that are vulnerable to high-severity fire. Future management should reduce forest densities and to restore stand- and landscape-level heterogeneity and increase forest resilience. The timing and size of repeat treatments such as thinning of subcanopy trees and prescribed burning, including Indigenous fire stewardship, can be guided by our refined understanding of the mixed-severity fire regime that was historically dominated by low- to moderate-severity fires in this dry forest ecosystem.


Author(s):  
Yegang Wu ◽  
Dennis Knight

A landscape approach was used to study fire history and fire behavior in the Douglas-fir forests and foothill vegetation of the Bighorn Canyon National Recreation Area in southcentral Montana. The 3,976 ha study area was divided into 4-ha grid cells, and traditional fire scar analysis and fuel sampling methods were used for data collection in each cell. There have been 15 surface fires during the last 109 years and 10 canopy fires during the last 360 years. The mean fire interval in the forests as a whole, was 7 years for surface fires and 31 years for canopy fires. Using the Weibull function, the recurrent time for fire in a specific grid cell was 212 and 226 years for surface and canopy fires, respectively. The distribution of the probability density function showed that there was a peak of high canopy fire frequency between 150-250 years of stand age. There was no obvious peak period for surface fires in humid ravines, which suggests that surface fires there are not associated with aging. Employing Rothermel's model, a fire behavior model (FIREMDL) was developed and linked it to a geographic information system (GRASS) to simulate flammability of each grid cell under different conditions of fuel moisture and wind velocity. The results suggest that flammability is highly variable because of differences in vegetation and topographic position.


Author(s):  
Michael Jenkins

The major objective of this ongoing study is to document vegetative changes resulting from alteration of the fire regime in the mixed conifer/aspen communities of Bryce Canyon National Park. Previous fire history studies have documented fire return intervals using fire scar analysis of ponderosa pine Pinus ponderosa in the park (Buchannan and Tolman 1983: Wight 1989) and for the Paunsaugunt Plateau (Stein 1988). Numerous other studies have similarly documented the fire regime in pre-European settlement ponderosa pine forests in western North America. The study is being conducted in the more mesic mixed conifer communities at the south end of Bryce Canyon National Park and will specifically document vegetative changes suggested by Roberts et al. (1992) resulting from suppression of frequent low intensity surface fires and overgrazing.


Sign in / Sign up

Export Citation Format

Share Document