Photosynthetic responses of black walnut (Juglansnigra) to shading

1982 ◽  
Vol 12 (4) ◽  
pp. 725-730 ◽  
Author(s):  
T. J. Dean ◽  
S. G. Pallardy ◽  
G. S. Cox

Photosynthetic characteristics and morphology of leaves of black walnut (Juglansnigra L.) seedlings grown under different types and degrees of shade were investigated by measuring insitu gross photosynthesis (Ps) and by microscopic study of leaf material. During the growing season of 1979, seedlings were subjected to artificial shading of two types: the first type simulated two overstory densities (leaf-area indices of 1 and 2) with corresponding proportions of sunflecks and total transmission of 50 and 21%, respectively, of incident photosynthetically active radiation (PAR, 400–700 nm); the second consisted of two densities of greenhouse shading screen which transmitted approximately 16 and 3% of incident PAR. From quantum efficiency values derived from Ps – quantum flux density response curves it was determined that the walnut seedlings adjusted photosynthetically to shade. Quantum efficiency increased as much as 44% with the densest shading. Light-saturated Ps did not appear to decline with increased shading if sunflecks were present, and it declined only 18% under complete shade that transmitted about 16% of incident PAR. Estimated daily photosynthesis per unit leaf area for black walnut growing under heavy and complete shade (3% of incident PAR) was nearly one-half that of the unshaded control. Shading resulted in plants that possessed leaves that were thinner, had less palisade mesophyll, had lower stomatal density, and had more chlorophyll per unit of leaf area. These data indicate that black walnut seedlings have the capacity for substantial photosynthesis under shade and may be more shade tolerant than silvicultural classifications suggest.

1978 ◽  
Vol 5 (2) ◽  
pp. 113 ◽  
Author(s):  
GG Johns

A series of physiological parameters was monitored under glasshouse conditions on micro-swards of four temperate herbage species. The micro-swards were grown on large soil cores so that the slow onset of water stress usually encountered in the field was simulated when water was withheld. Generally, water use per unit cover continued at a high rate even when water stress was causing considerable leaf death. Leaf diffusive conductance fell only gradually and did not reach minimum values until after much of herbage on the swards was dead. Stomatal closure in all species reduced water use per unit foliage cover by only 20-30%. Under increasing water stress, gross photosynthesis resembled stomatal conductances in remaining substantial (>50% of controls) even when relative water contents had fallen to below 80%. Both water use and gross photosynthesis were reduced more as a result of the reduced leaf area available for gaseous exchange than by the influence of stomatal action. Leaf moisture retention curves were similar for all species, there being a loss of c. 10% of relative water content per unit leaf water potential, down to drier than -5 MPa. It was concluded that the generally inferior herbage yields of white clover under dryland field conditions could be due in part to its relatively high leaf diffusive conductances when under water stress, while the better than average tall fescue yields under similar conditions may be attributed in part to its ability to roll its leaves tightly when water stress prevails.


1975 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
HM Rawson ◽  
CL Craven

Changes in stomatal density and size were followed in tobacco and sunflower leaves expanding from 10% of final area (10% Amax) to Amax under different levels of radiation. Lower radiation increased final leaf area, reduced stomatal densities, and increased area per stoma but had little effect on stomatal area per unit leaf area at Amax. In very young leaves (20% Amax) there was a wide range in the sizes of individual stomata, some stomata being close to full size, but by Amax differences were small. The possible relationship between the developmental patterns described and photosynthesis is briefly discussed.


2006 ◽  
Vol 33 (5) ◽  
pp. 465 ◽  
Author(s):  
Susanne Schmidt ◽  
Dieter P. Tracey

Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar δ13C, but epiphytes had more extreme values; this indicates that both groups of plants use the C3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keisuke Sasaki ◽  
Yuuki Ida ◽  
Sakihito Kitajima ◽  
Tetsu Kawazu ◽  
Takashi Hibino ◽  
...  

Abstract Alteration in the leaf mesophyll anatomy by genetic modification is potentially a promising tool for improving the physiological functions of trees by improving leaf photosynthesis. Homeodomain leucine zipper (HD-Zip) transcription factors are candidates for anatomical alterations of leaves through modification of cell multiplication, differentiation, and expansion. Full-length cDNA encoding a Eucalyptus camaldulensis HD-Zip class II transcription factor (EcHB1) was over-expressed in vivo in the hybrid Eucalyptus GUT5 generated from Eucalyptus grandis and Eucalyptus urophylla. Overexpression of EcHB1 induced significant modification in the mesophyll anatomy of Eucalyptus with enhancements in the number of cells and chloroplasts on a leaf-area basis. The leaf-area-based photosynthesis of Eucalyptus was improved in the EcHB1-overexpression lines, which was due to both enhanced CO2 diffusion into chloroplasts and increased photosynthetic biochemical functions through increased number of chloroplasts per unit leaf area. Additionally, overexpression of EcHB1 suppressed defoliation and thus improved the growth of Eucalyptus trees under drought stress, which was a result of reduced water loss from trees due to the reduction in leaf area with no changes in stomatal morphology. These results gave us new insights into the role of the HD-Zip II gene.


1984 ◽  
Vol 11 (6) ◽  
pp. 509 ◽  
Author(s):  
H Usuda ◽  
MSB Ku ◽  
GE Edwards

Among 10 C4 species having a wide range in photosynthetic activity, the rates of photosynthesis/leaf area under high light were examined and compared with the chlorophyll and soluble protein content and the activities of several photosynthetic enzymes. The species examined were Digitaria sanguinalis, Echinochloa crus-galli, Microstegium vimineum, Panicum capillare, Panicum miliaceum, Paspalum dilatatum, Paspalum notatum, Pennisetum purpureum, Setaria lutescens, and Zea mays. The photosynthetic rates per unit leaf area ranged from 10 to 38 �mol CO2 fixed m-2 s-1. Among the 10 species there was a high degree of correlation of rate of photosynthesis/leaf area with soluble protein (r = 0.88), ribulose 1,5-bisphosphate carboxylase (r = 0.88) and pyruvate,PI dikinase (r = 0.94), but a lower correlation of photosynthetic rate/leaf area with phosphoenolpyruvate carboxylase (r = 0.74) and no significant correlation of photosynthetic rate/leaf area with chlorophyll content (r = 0.56). Among eight species of the NADP-malic enzyme C4 subgroup, there was a good correlation of photosynthetic ratelleaf area with NADP-malate dehydrogenase (r = 0.88) and NADP- malic enzyme (r = 0.92). Extractable activities of both the ribulose 1,5-bisphosphate carboxylase and the dikinase were generally close to the rate of photosynthesis. When comparing the activity per unit leaf area of one enzyme with another, generally a high degree of correlation was found among the species. The results suggest that a given C4 species tends to maintain a balance in the activities of several photosynthetic enzymes and that there is potential to estimate capacity for C4 photosynthesis under high light through determining activity of certain photosynthetic enzymes.


2014 ◽  
Vol 66 (2) ◽  
pp. 615-627
Author(s):  
J. Kołodziejek

The morphological, anatomical and biochemical traits of the leaves of yellow foxglove (Digitalis grandiflora Mill.) from two microhabitats, forest interior (full shade under oak canopy) and forest edge (half shade near shrubs), were studied. The microhabitats differed in the mean levels of available light, but did not differ in soil moisture. The mean level of light in the forest edge microhabitat was significantly higher than in the forest interior. Multivariate ANOVA was used to test the effects of microhabitat. Comparison of the available light with soil moisture revealed that both factors significantly influenced the morphological and anatomical variables of D. grandiflora. Leaf area, mass, leaf mass per area (LMA), surface area per unit dry mass (SLA), density and thickness varied greatly between leaves exposed to different light regimes. Leaves that developed in the shade were larger and thinner and had a greater SLA than those that developed in the half shade. In contrast, at higher light irradiances, at the forest edge, leaves tended to be thicker, with higher LMA and density. Stomatal density was higher in the half-shade leaves than in the full-shade ones. LMA was correlated with leaf area and mass and to a lesser extent with thickness and density in the forest edge microsite. The considerable variations in leaf density and thickness recorded here confirm the very high variation in cell size and amounts of structural tissue within species. The leaf plasticity index (PI) was the highest for the morphological leaf traits as compared to the anatomical and biochemical ones. The nitrogen content was higher in the ?half-shade leaves? than in the ?shade leaves?. Denser leaves corresponded to lower nitrogen (N) contents. The leaves of plants from the forest edge had more potassium (K) than leaves of plants from the forest interior on an area basis but not on a dry mass basis; the reverse was true for phosphorus.


2006 ◽  
Vol 24 (3) ◽  
pp. 160-165 ◽  
Author(s):  
G. Niu ◽  
D.S. Rodriguez ◽  
R. Cabrera ◽  
C. McKenney ◽  
W. Mackay

Abstract The water use and crop coefficient of five woody landscape species were determined by growing the shrubs both in 56-liter (15 gal) drainage lysimeters and in above-ground 10-liter containers (#3). Water use per plant, crop coefficient and overall growth parameters differed by species and culture system. Of the five species tested, Buddleia davidii ‘Burgundy’ and Nerium oleander ‘Hardy Pink’ had higher water use per plant in the lysimeters than in the containers. Water use per plant for Abelia grandiflora ‘Edward Goucher’, Euonymus japonica and Ilex vomitoria ‘Pride of Houston’ was the same for the two culture systems. Crop coefficient and growth index of A. grandiflora, E. japonica, and I. vomitoria was similar between the two systems. The growth index of B. davidii and N. oleander was much higher in the lysimeters than in the containers. Abelia grandiflora and E. japonica had more growth in the containers than in the lysimeters while I. vomitoria had slightly larger leaf area in the lysimeters than in the containers. The culture system did not affect the water use per unit leaf area of all species. Therefore, our results indicated that by quantifying the leaf area, the plant water use in the two culture systems is exchangeable.


1993 ◽  
Vol 23 (4) ◽  
pp. 749-755 ◽  
Author(s):  
Bert M. Cregg

Xylem pressure potential (ψx), net photosynthesis (A), needle conductance (gn), and transpiration (E) were measured periodically throughout the 1991 growing season on 16 ponderosa pine (Pinusponderosa Dougl. ex Laws.) trees growing in a 23-year-old provenance planting in eastern Nebraska. The trees studied were from four diverse sources: western Montana, northwest South Dakota, southern New Mexico, and central Arizona. In addition to water relations and gas exchange, specific leaf area, stomatal density, and surface to volume ratios were determined on 1-year-old foliage of each tree. Compared with the other seed sources, gas exchange of the South Dakota source was lowest early in the summer, when ψx was generally high, and highest in the late summer, when ψx declined. However, the relation of gn to ψx did not appear to differ among the seed sources. The South Dakota source had lower stomatal density and needle length than the other sources tested. No differences in specific leaf area or surface to volume ratio were observed. Overall, variation in physiology and needle morphology among seed sources of mature ponderosa pine appears to be more subtle than intraspecific variation of seedlings of other species reported in the literature.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Ronald E. Jones ◽  
Robert H. Walker

Greenhouse and growth chamber experiments with potted plants were conducted to determine the effects of interspecific root and canopy interference, light intensity, and soil moisture on water uptake and biomass of soybean, common cocklebur, and sicklepod. Canopy interference and canopy plus root interference of soybean with common cocklebur increased soybean water uptake per plant and per unit leaf area. Root interference with soybean decreased common cocklebur water uptake per plant. Canopy interference of soybean with sicklepod increased soybean water uptake per unit leaf area, while root interference decreased uptake per plant. Combined root and canopy interference with soybean decreased water uptake per plant for sicklepod. Soybean leaf area and shoot weight were reduced by root interference with both weeds. Common cocklebur and sicklepod leaf area and shoot weight were reduced by root and canopy interference with soybeans. Only common cocklebur root weight decreased when canopies interfered and roots did not. The relationship between light intensity and water uptake per unit leaf area was linear in both years with water uptake proportional to light intensity. In 1991 water uptake response to tight was greater for common cocklebur than for sicklepod. The relationship between soil moisture level and water uptake was logarithmic. Common cocklebur water uptake was two times that of soybean or sicklepod at −2 kPa of pressure potential. In 1991 common cocklebur water uptake decreased at a greater rate than soybean or sicklepod in response to pressure potential changes from −2 to −100 kPa.


2003 ◽  
Vol 19 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Katia Silvera ◽  
John B. Skillman ◽  
J. W. Dalling

We examined the distribution, germination, growth and photosynthetic characteristics of two co-existing morphotypes of the pioneer tree Trema micrantha at the Barro Colorado Nature Monument (BCNM), Panama. Morphotypes differed significantly in distribution and in seed characteristics. A ‘large’-seeded morphotype (endocarp mass=3.83 mg) was associated with treefall gaps in the forest interior, whereas a ‘small’-seeded morphotype (endocarp mass=1.38 mg) was found predominantly on landslides on the margins of Lake Gatun. Seeds of the small-seeded morphotype germinated faster than seeds of the large-seeded morphotype, with seedlings of the small-seeded morphotype showing both a higher Unit Leaf Rate (ULR) and a lower Specific Leaf Area (SLA). Differences in photosynthetic rates reflected differences in SLA; the small-seeded morphotype had a higher rate on a leaf area basis, while the large-seeded morphotype had a higher rate on a leaf mass basis. Although allocation patterns between morphotypes varied in a way consistent with known interspecific differences between ‘sun’ and ‘shade’ plants, relative growth rates (RGR) of the morphotypes were similar across different light conditions suggesting that factors other than light, such as water uptake efficiency, soil nutrient requirements, and perhaps seed dispersal characters may explain the habitat partitioning of morphotypes.


Sign in / Sign up

Export Citation Format

Share Document