Stand structure, thinning prescriptions, and density indexes in a Douglas-fir thinning study, Western Washington, U.S.A.

1983 ◽  
Vol 13 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Chadwick Dearing Oliver ◽  
Marshall D. Murray

A Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) thinning study was established in 1959 in a stand begun after logging in 1930. Thinnings to set basal area densities were done in 1959, 1962, 1966, and 1970. On each plot both large and small trees were removed since average basal area per tree was kept constant before and after thinning. Volume growth varied greatly between plots of the same age, initial basal area, and site because of differences in stand structure. Large trees on a plot grew more per tree and per basal area than small trees. Stand basal area, stand volume, number of stems, or number of dominant and codominant trees were not closely related to volume growth per hectare, although density indexes giving weight to larger trees showed the closest relation. The lack of close relation between stand density indexes and growth found here and elsewhere probably means the indexes do not uniquely define stand structures; it does not necessarily mean that thinning will not increase volume growth per hectare. Volume growth per hectare after thinning to a given basal area density will be greater and probably more consistent if larger trees are left and enough time is allowed for the stand to recover following thinning.

1988 ◽  
Vol 18 (7) ◽  
pp. 859-866 ◽  
Author(s):  
K. L. O'Hara

The growth of individual trees from four thinning treatments in a 64-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stand was analyzed to determine desirable residual stand structures after thinning. Dominant and codominant trees had the highest individual tree stem volume growth rates over the previous 5 years, and accounted for most stand volume growth in thinned and unthinned stands. Two measures of growing space, crown projection area and sapwood basal area (a surrogate for leaf area), were used to measure how efficiently individual trees used their growing space. Crown classes were useful in characterizing growing space efficiency (volume growth per unit of growing space) only in the unthinned treatment. In thinned treatments, tall trees with medium-sized crowns were most efficient, while in the unthinned treatment, tall trees with relatively large crowns were most efficient. A large crown in an unthinned stand was comparable in size to a medium-sized crown in a thinned stand. Results suggest growing space is not limiting individual tree growth in thinned stands and that thinning to a particular stand structure is more appropriate than thinning to a particular level of stand density.


2011 ◽  
Vol 26 (2) ◽  
pp. 91-93 ◽  
Author(s):  
Jason R. Teraoka ◽  
Christopher R. Keyes

Abstract A growing interest in the restoration of young second-growth forests by managers of reserves in the redwood region has led to a need to evaluate restoration-based silvicultural strategies. This case study assessed the effectiveness of low thinning as a forest restoration tool via analysis of stand structure at Redwood National Park's Whiskey Forty Forest Restoration Study. The second-growth stand had more than 5,500 trees ha−1 and 57.0 m2 ha−1 basal area and consisted chiefly of three species: Douglas-fir (the dominant species), redwood, and tanoak. Low thinning reduced stand density but also reduced species richness by eliminating scarce species. Seven years after thinning, growth was enhanced (33.6% gain in basal area), and mortality was minor (3% of all stems); however, Douglas-fir remained competitive in the upper canopy. Its average basal area increment was less than redwood's, but its radial growth was equal and its rate of basal area growth was greater in the years following thinning. We conclude that the thinning improved stand conditions but did not fully satisfy restoration goals and that other thinning methods, such as variable-density thinning, are likely to be more effective at promoting redwood dominance.


2020 ◽  
Vol 139 (6) ◽  
pp. 989-998
Author(s):  
Sauli Valkonen ◽  
Lucie Aulus Giacosa ◽  
Juha Heikkinen

Abstract This study focused on tree mortality in spruce-dominated stands managed using the single-tree selection method in southern Finland. Together with regeneration and tree growth, mortality is one of the basic elements of the stand structure and dynamics in selection stands. The study was based on data acquired from a set of 20 permanent experimental plots monitored with repeated measurements for 20 years. The average mortality in the number of stems (N) was 4.45 trees ha−1a−1, in basal area (G) 0.07 m2 ha−1a−1, and in stemwood volume (V) 0.56 m3 ha−1a−1. In relative terms it was 0.50% of N, 0.30% of G and 0.27% of V, respectively. Wind and snow were the most common causes of mortality, while deaths by biotic causes (mammals, insects, pathogens) were extremely rare. Some 6–10% of the total loss in the number of stems and volume was attributable to the loss or removal of trees that sustained serious damage in harvesting. Most of the mortality occurred in the smallest diameter classes of up to 20 cm. Such a high mortality among small trees can have an adverse influence on the sustainability of selection structures if not successfully checked in harvesting and management.


2011 ◽  
Vol 28 (2) ◽  
pp. 92-96 ◽  
Author(s):  
Aaron R. Weiskittel ◽  
Laura S. Kenefic ◽  
Rongxia Li ◽  
John Brissette

Abstract The effects of four precommercial thinning (PCT) treatments on an even-aged northern conifer stand in Maine were investigated by examining stand structure and composition 32 years after treatment. Replicated treatments applied in 1976 included: (1) control (no PCT), (2) row thinning (rowthin; 5-ft-wide row removal with 3-ft-wide residual strips), (3) row thinning with crop tree release (rowthin+CTR; 5-ft-wide row removal with crop tree release at 8-ft intervals in 3-ft-wide residual strips), and (4) crop tree release (CTR; release of selected crop trees at 8×8-ft intervals). PCT plots had more large trees and fewer small trees than the control in 2008. There were no other significant differences between the rowthin and control. The rowthin+CTR and CTR treatments had lower total and hardwood basal area (BA) and higher merchantable conifer BA than the control. CTR also resulted in more red spruce (Picea rubens [Sarg.]) and less balsam fir (Abies balsamea [L.]) than the other treatments. Although stand structures for rowthin+CTR and CTR were similar, the percentage of spruce in CTR was greater. Although the less-intensive rowthin+CTR treatment may provide many of the same benefits as CTR, the latter would be the preferred treatment if increasing the spruce component of a stand is an objective. Overall, early thinning treatments were found to have long-term effects on key stand attributes, even more than 30 years after treatment in areas with mixed species composition and moderate site potential.


2019 ◽  
Vol 49 (11) ◽  
pp. 1471-1482
Author(s):  
Woongsoon Jang ◽  
Bianca N.I. Eskelson ◽  
Louise de Montigny ◽  
Catherine A. Bealle Statland ◽  
Derek F. Sattler ◽  
...  

This study was conducted to quantify growth responses of three major commercial conifer species (lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson), interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), and spruce (white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex. Engelm. × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière))) to various fertilizer blends in interior British Columbia, Canada. Over 25 years, growth-response data were repeatedly collected across 46 installations. The fertilizer blends were classified into three groups: nitrogen only; nitrogen and sulfur combined; and nitrogen, sulfur, and boron combined. The growth responses for stand volume, basal area, and top height were calculated through absolute and relative growth rate ratios relative to a controlled group. Fertilizer blend, inverse years since fertilization, site index, stand density at fertilization, and their interactions with the fertilizer blend were used as explanatory variables. The magnitude and significance of volume and basal area growth responses to fertilization differed by species, fertilizer-blend groups, and stand-condition variables (i.e., site index and stand density). In contrast, the response in top height growth did not differ among fertilization blends, with the exception of the nitrogen and sulfur fertilizer subgroup for lodgepole pine. The models developed in this study will be incorporated into the current growth and yield fertilization module (i.e., Table Interpolation Program for Stand Yields (TIPSY)), thereby supporting guidance of fertilization applications in interior forests in British Columbia.


1989 ◽  
Vol 4 (4) ◽  
pp. 116-119 ◽  
Author(s):  
Linda S. Heath ◽  
H. N. Chappell

Abstract Response surface methodology was used to estimate six-year volume growth response to 1 application of 200 lb nitrogen per acre in unthinned and thinned Douglas-fir (Pseudotsuga menziesii) stands of breast height age (bha) 25 years or less. Regional mean fertilizer response was 16% in unthinned stands and 20% in thinned stands. Site index had an increasingly inverse effect on response as basal area increased in both unthinned and thinned stands. Response varied little over site index in regions of low basal area, decreased moderately as site index increased in the intermediate region, and decreased rapidly in the high basal area region. West. J. Appl. For. 4(4):116-119, October 1989.


2018 ◽  
Vol 26 (3) ◽  
pp. e014 ◽  
Author(s):  
Ahmad Hosseini ◽  
Seyed M. Hosseini ◽  
Juan C. Linares

Aim of study: Drought and stand structure are major and interconnected drivers of forest dynamics. Water shortage and tree-to-tree competition may interact under the current climate change scenario, increasing tree mortality. In this study, we aimed to investigate climate trends, site and stand structure effects on tree mortality, with the main hypothesis that drought-induced mortality is higher as competition increases.Area of study: Persian oak forests from Zagros Range, western Iran.Material and Methods: We split the study area into 20 topographical units (TUs), based on aspect, slope and elevation. In each TU, three 0.1 ha plots were established to quantify site and stand characteristics, namely the diameter of all trees and shrubs, stand density and basal area, canopy dieback and mortality. In addition, soil profiles were analyzed to obtain physical and chemical soil properties. Six transects 100 m length were established per TU to measure tree-to-tree competition for alive and dead trees.Main Results: The highest mortality rates and crown dieback were found at higher elevations and southern and western aspects. Our findings confirm increasing rates of tree mortality in stands with higher tree density and shallow soils. As regard links between climate change and forest decline, our results suggest that changing forest structure may have a significant impact on dust emission.Research highlights: Despite severe dry years occurred recently the study area, they are not significantly different than those recorded in the past. Stand structure appears as a modulating factor of climate change effects, linked to competition-related tree vulnerability to drought.


1991 ◽  
Vol 15 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Paul A. Murphy ◽  
James B. Baker ◽  
Edwin R. Lawson

Abstract Selection (uneven-aged) management was instituted in shortleaf pine (Pinus echinata Mill.) stands on three experimental watersheds in the Ouachita Mountains. The residual stand structure imposed on each was 60 ft² of basal area, a maximum tree diameter of 18 in., and a q value of 1.2 for 1 in. dbh classes. Hardwoods were injected with herbicide before the initial harvest. The average annual per-acre growth for the three watersheds for the first 6-year management period was 2 ft² of merchantable basal area growth, 57 ft³ of merchantable volume growth, and sawtimber growth of 157 board feet for the Doyle rule, 231 bd ft for the Scribner rule, and 274 bd ft for the International ¼-inch rule. Basal area and merchantable volume growth were up to expectations, but sawtimber growth was not. Sawtimber growth may increase as stand structure improves under management. South J. Appl. For. 15(1):61-67.


1991 ◽  
Vol 15 (2) ◽  
pp. 73-79 ◽  
Author(s):  
G. A. Ruark ◽  
C. E. Thomas ◽  
W. A. Bechtold ◽  
D. M. May

Abstract Data from Forest Inventory and Analysis (FIA) units of the USDA Forest Service were used to compare average annual stand-level basal area accretion onto survivor pines in naturally regenerated pine stands throughout Alabama and Georgia. Growth rates measured between 1972-82 were compared to growth rates during the previous 10-year survey cycle in each state. Separate analyses were conducted for loblolly (Pinus taeda), longleaf (P. palustris), shortleaf (P. echinata), and slash (P. elliottii) pine cover types. The unadjusted average stand-level growth rates for survivor pines 1.0 in. diameter and greater at breast height were notably lower for all cover types during the latter survey in Georgia, while only the average unadjusted growth of shortleaf was substantially lower during this period in Alabama. However, when growth rates were adjusted with regression models to account for differences in initial stand structure (stand size class, stand density, site quality class, hardwood competition, and mortality) between the two survey periods, reductions in average adjusted basal area growth ranged from 3% to 31% during the later cycle in both states. The reductions were statistically significant in almost every case. The agents causing the growth differences were not identified, but it is unlikely that stand dynamics are responsible. The observational nature of the FIA dataset precludes further resolution of causal relationships. South. J. Appl. For. 15(2):73-79.


2006 ◽  
Vol 36 (3) ◽  
pp. 768-782 ◽  
Author(s):  
Steven R Radosevich ◽  
David E Hibbs ◽  
Claudio M Ghersa

In the Pacific Northwest, a mixture of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and red alder (Alnus rubra Bong.) often results when red alder regenerates naturally in planted conifer stands. The relationships among stand structure, tree mortality, tree size, and understory development in the two species mixtures were explored at two sites for the first 16 years after planting. Treatments included a range of species proportions, and red alder was either planted simultaneously with Douglas-fir or planting was delayed for 5 years. Red alder was also removed from some simultaneously planted proportions. Both replacement effects (total stand density held constant) and additive effects (stand density doubled) of the interaction were considered. Red alder grew relatively better at Cascade Head Experimental Forest in the Coast Range, while Douglas-fir grew better at H.J. Andrews Experimental Forest in the less temperate Cascade Mountains. Possible production benefits from mixed plantings were examined using two methods of calculation. Potential production benefits from certain planted proportions of the two species occurred at H.J. Andrews Experimental Forest. No planting time or species proportion resulted in yield improvements over monoculture stands at Cascade Head Experimental Forest. Understory species also varied because of differences in site and stand characteristics that resulted from the differences in planting times and species proportions.


Sign in / Sign up

Export Citation Format

Share Document