Application of the Kalman filter model in site index equation construction

1994 ◽  
Vol 24 (7) ◽  
pp. 1415-1418 ◽  
Author(s):  
Yonghe Wang ◽  
Bijan Payandeh

Extension of the Richards biological growth function has been applied extensively to describe height growth patterns or to develop site index equations. We introduce a linear filter model to achieve the same goals. Although derivation of the filter model involves more computation, it compares well with the Richards growth model in accuracy when applied to a black spruce (Piceamariana (Mill.) B.S.P) stem analysis data set from northern Ontario. The main advantage of the filter model, however, is that it can be used as a base-age invariant site index model.


1995 ◽  
Vol 12 (2) ◽  
pp. 57-63 ◽  
Author(s):  
Bijan Payandeh ◽  
Yonghe Wang

Abstract Stem analysis data from plantations of black spruce, white spruce, and jack pine from northern Ontario were fitted to base-age specific and base-age invariant site index models. The resulting equations and their respective parameters were compared via nonlinear analysis of covariance. The base-age specific models produced a somewhat better fit to the data than their base-age invariant counterparts, although the latter are considered theoretically more elegant. Graphical comparison of plantation and natural stand site index curves for the three species showed both similarities and differences. North. J. Appl. For. 12(2):57-63.



2001 ◽  
Vol 77 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Willard H. Carmean ◽  
G. Hazenberg ◽  
G. P. Niznowski

Stem-analysis data from dominant and codominant trees were collected from 383 plots located in fully stocked, even-aged, undisturbed mature jack pine stands. Separate site index curves were independently formulated for four regions of northern Ontario using the Newnham constrained nonlinear regression model; these formulations were used for comparing regional site index curves at three levels of site index (10 m, 15 m and 20 m).Comparisons showed that no significant differences existed between the four regional curves as well as with previously published site index curves for the North Central Region. Each of the four regions had similar polymorphic height-growth patterns; therefore, data for the four regions were combined and a single formulation was used to develop a polymorphic set of site index curves for all of northern Ontario. We found that poor sites in each region had almost linear height growth up to 100 years breast-height age, but for each region height growth became more curvilinear with increasing site index. The recommended site index curves for northern Ontario are based on a formulation using only data from plots 100 years and less but this formulation was not significantly different from a formulation using only data from plots 80 years and less, or a formulation that included all data from plots older than 100 years breast-height age.Comparisons were made between our northern Ontario curves and other jack pine site index curves for Ontario as well as curves for other areas of Canada and the United States. These comparisons generally showed considerable older age differences. Reasons for these differences are uncertain but could be due to differences in the amount and kind of data used for these other curves, could be due to differences in analytical methods, or could be due to regional differences in climate, soil and topography. Key words: site quality evaluation, polymorphic height growth, regional site index curves, site index prediction equations, comparisons among site index curves.



1987 ◽  
Vol 17 (10) ◽  
pp. 1181-1189 ◽  
Author(s):  
Victor G. Smith ◽  
Martin Watts

To date, methods of deriving site index (S) equations assume that stochastic error is only present in the regressor. This paper develops a method, termed the "structural method," which recognizes that both dominant stand height (H) and S measurements contain stochastic error. To achieve this, the structural method utilizes the structural relationship that exists between H and S to derive an S equation. S equations are derived for black spruce, Piceamariana (Mill.) B.S.P., using the structural method and various other methods, with linear and nonlinear models that are currently in use. Data used in the study consist of 56 black spruce permanent sample plots, containing a total of 382 observations, from north central Ontario and the Clay Belt Region of northern Ontario. This data set is split into 36 plots (260 observations) for deriving S equations and 20 plots (122 observations) for testing the equations for accuracy in predicting H, S, and future H. The equations are also examined for bias over stand age. Results show that height development of black spruce is not asymptotic and is best described by a linear model. Overall, the structural method provides the most accurate S equation within the range of the data. It predicted 90% of the H test observations with an error of 0.4 m or less, 89% of the S test observations with an error of 0.4 m or less, and 90% of the future H test observations with an error of 0.7 m or less. The structural method also has the advantage of producing only one equation for predicting both H and S. This enables estimates of both H and S to be made from one graph of H over age by S classes.



1978 ◽  
Vol 54 (1) ◽  
pp. 39-41 ◽  
Author(s):  
Bijan Payandeh

Site index formulas were derived for peatland black spruce (Picea mariana [Mill.] B.S.P.) in northern Ontario based on stem analysis of 60 dominant and codominant trees. Nonlinear regression analysis and a biological growth function were employed to express both height as a function of site index and stand age and also site index as a function of stand height and age. Analysis of results indicates that peatland black spruce has a different pattern of height growth than that shown by Plonski's site index curves, particularly for site indices less than 8 m and stands older than 80 years.



2008 ◽  
Vol 25 (4) ◽  
pp. 202-210 ◽  
Author(s):  
Peter F. Newton

Abstract The goal of this study was to develop base–age invariant polymorphic height growth and site index equations for peatland black spruce (Picea mariana [Mill.]; BSP) stands situated within the western portion of the Northern Clay section of the Canadian Boreal Forest region. Procedurally, equation parameters were estimated via ordinary least squares analysis using 291 mean dominant height − mean stand age (Hd − As) data pairs derived from 42 permanent sample plots (PSPs). The predictive ability of the resultant height growth equation was evaluated by examining mean absolute and relative errors and associated 95% prediction intervals over 5-, 15-, 25-, 35-, and 45-year projection periods. Furthermore, using an independent data set consisting of 129 Hd − As data pairs derived from 24 PSP, the new height growth equation was compared with two preexisting equations. Overall, the results indicated that the predictions derived from the new equation were unbiased irrespective of error type or projection period length and that the new equation exhibited greater predictive accuracy and was more consistent with expected dominant height development patterns than the preexisting equations. Consequently, the new equations are recommended for use when describing height growth patterns or quantifying site quality within peatland black spruce stands.



2004 ◽  
Vol 80 (4) ◽  
pp. 495-506 ◽  
Author(s):  
V. Lacerte ◽  
G R Larocque ◽  
M. Woods ◽  
W J Parton ◽  
M. Penner

The Lake States variant of the FVS (Forest Vegetation Simulator) model (LS-FVS), also known as the LS-TWIGS variant of FVS, was validated for black spruce (Picea mariana (Mill.) BSP), white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) forests in northern Ontario. Individual-tree data from 537 remeasured sample plots were used. This dataset included different combinations of site index, stand density and age. It was possible to compare observations and predictions for different projection length periods. The validation exercise included a biological consistency analysis, the computation of mean percent difference (MPD) for stand density, stand basal area, top height and quadratic mean diameter (QMD) and the comparison of observed and predicted individual-tree dbh. The biological consistency analysis indicated that LS-FVS logically predicted the effect of site index on top height, stand basal area and QMD for black spruce and jack pine. However, the decrease in stand basal area at young ages was inconsistent with the normal development pattern of the forest stands under study and was attributed to deficiencies in the prediction of mortality. LS-FVS was found to underpredict stand density, stand basal area and top height and to over-predict QMD. Even though there were large errors in the prediction of change in stand density, LS-FVS was nevertheless consistent in the prediction of the shape of the dbh size distribution. Key words: FVS, Forest Vegetation Simulator, validation, biological consistency analysis



1974 ◽  
Vol 4 (1) ◽  
pp. 114-126 ◽  
Author(s):  
J. K. Jeglum

Results from a principal component analysis suggest that nutrient regime is more important to vegetational variation than the moisture–aeration regime. Correlations between site index and habitat measures suggest that the moisture–aeration regime influences tree growth more than the nutrient regime. For particular components of vegetational variation and for segments of the total data, the proportional influence of the two gradients varies. Moisture–aeration and nutrient regimes explain a large proportion of the variation in minor vegetation and tree growth on black spruce peatlands.



2017 ◽  
Vol 47 (11) ◽  
pp. 1441-1449 ◽  
Author(s):  
Mehmet Seki ◽  
Oytun Emre Sakici

Some dynamic site index models based on the generalized algebraic difference approach (GADA) were fitted for Crimean pine (Pinus nigra J.F. Arnold subsp. pallasiana (Lamb.) Holmboe) stands in Taşköprü, Turkey. Data were obtained from 132 dominant trees representing the wide range of site quality in the region. Nonlinear regression analysis and a second-order continuous-time autoregressive error structure were applied. After autoregressive modeling, the fitted models were evaluated both statistically and graphically. The best results were obtained with the dynamic site index model derived from the Bertalanffy–Richards base equation, accounting for about the 99% of the total variance in height–age relationships in dominant trees, with an Akaike information criterion (AIC) value of 119.55 and root mean square error (RMSE) of 0.5446. The selected base-age invariant dynamic site index curves provided the polymorphism with multiple asymptotes and other realistic height growth patterns.



2002 ◽  
Vol 78 (2) ◽  
pp. 306-313 ◽  
Author(s):  
Gordon D Nigh ◽  
Pavel V Krestov ◽  
Karel Klinka

Black spruce (Picea mariana (Mill.) B.S.P.) is a boreal species that occurs extensively across the northern half of British Columbia. Forest managers require better growth and yield information for black spruce given the anticipated increase in demand for wood in the northern part of the province. The purpose of this study was to develop height-age models for black spruce. Ninety-one stem analysis plots were established in the BWBS and SBS biogeoclimatic zones. Three black spruce site trees from each plot were stem analyzed and the data were converted into height-age data. A conditioned log-logistic function was fit to the data. Indicator variables were used to test for differences in height growth between the sampled subzones. Although the warm subzones had different height growth patterns than the cool subzones, there was general agreement among the height-age models from British Columbia, Alberta, and New Brunswick up to about age 100. Key words: biogeoclimatic zones, height-age models, logistic function, site index, stem analysis



1992 ◽  
Vol 22 (9) ◽  
pp. 1378-1386 ◽  
Author(s):  
Richard Zarnovican

Height growth of black spruce was studied from stem analysis in 72 circular plots of 0.1 ha located in the Lebel-sur-Quévillon and Dolbeau regions, province of Quebec. Tree age analysis showed that only 52 of these plots were evenly aged; therefore, only these were retained in the present study. Mean age determined at diameter at breast height was as variable as mean total age. The comparison of Plonski's and Vézina and Linteau's parameterized site-index curves suggested that Plonski's model is more suitable for asymptotic growth of black spruce. The comparison of parameterized average height curves from 52 plots with Plonski's curves indicated that black spruce height growth in these regions is not uniform; four different growing forms corresponding to temporal structures can be distinguished. These growing forms can have asymptotic or linear curves; these can coincide with or cut across the Plonski's site-class curves, according to the increase or decrease in height growth with age. Finally, the growing forms are also found by parameters of Korf's growth function, by height increments, and by ages at which height increment is highest.



Sign in / Sign up

Export Citation Format

Share Document