Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada

1999 ◽  
Vol 29 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Carol Miller ◽  
Dean L Urban

Fire is a major agent of spatial pattern formation in forests, as it creates a mosaic of burned and unburned patches. While most research has focused on landscape-level patterns created by crown fires, millions of hectares of forests in North America are subject to surface fire regimes. A spatially explicit forest gap model developed for the Sierra Nevada was used to evaluate the influence of surface fire regimes on the heterogeneity of forest structure and composition within forest stands. Forest pattern was evaluated for a wide range of topographic positions in Sequoia National Park, California, to determine if repeated surface fires amplify existing spatial patterns. The spatial heterogeneity of some forest characteristics increased under a simulated fire regime relative to scenarios without fire. Although a distinct and regular fire-generated spatial pattern was not detected with an analysis of spatial autocorrelation, simulated surface fires did alter the spatial heterogeneity within a forest stand, primarily by degrading a regular structure that is imposed by competition for light in the absence of fire. The interaction between surface fires and forest pattern may be qualitatively different from that which occurs in forests subject to crown fires. As such, what has been learned about forests dominated by crown fires may not apply to forests subject to surface fire regimes.

2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2011 ◽  
Vol 20 (2) ◽  
pp. 223 ◽  
Author(s):  
Andrea E. Thode ◽  
Jan W. van Wagtendonk ◽  
Jay D. Miller ◽  
James F. Quinn

This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.


2012 ◽  
Vol 42 (8) ◽  
pp. 1505-1517 ◽  
Author(s):  
Andrew J. Larson ◽  
Kyle C. Stover ◽  
Christopher R. Keyes

Spatial pattern is an essential attribute of forest ecosystems and influences many ecological processes and functions. We hypothesized that restoration thinning conducted in fire-excluded ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) – western larch ( Larix occidentalis Nutt.) – mixed-conifer forest would restore spatial patterns characteristic of active fire regime old-growth. We evaluated effects of thinning on spatial patterns and also compared post-treatment patterns with reconstructions of pre-suppression patterns at nearby old-growth reference sites that developed in the historical mixed-severity fire regime. Restoration thinning reduced spatial aggregation and resulted in globally random tree patterns comprised of local tree clumps, openings, and widely spaced single trees, similar to reference conditions. Post-treatment spatial patterns in the replicate treatment units spanned the range of variability bounded by the reference sites. Our analyses indicate that, under certain circumstances, restoration of spatial heterogeneity in unlogged, fire-excluded forests can be achieved by retaining live legacy pre-suppression trees during thinning treatments. However, success is not assured. Restoration of spatial heterogeneity in forests where few live pre-suppression trees remain due to past mortality or harvest, a common condition of candidate restoration sites, presents a greater silvicultural challenge. Thus, we recommend that, as a general rule, managers deliberately address spatial pattern when crafting forest restoration treatment objectives and prescriptions.


2020 ◽  
Author(s):  
Stijn Hantson ◽  
Douglas I. Kelley ◽  
Almut Arneth ◽  
Sandy P. Harrison ◽  
Sally Archibald ◽  
...  

Abstract. Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle, and to infer relationships between climate, land use, and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, with the aim of improving projections of fire regime characteristic and fire impacts on ecosystems and human societies under the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39–536 Mha), and global annual fire carbon emission (0.91–4.75 Pg C a−1) for modern conditions (2002–2012), but most of the range in burnt area is within observational uncertainty (345–468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent inter-annual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the northern hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.


In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World, leading researchers in fire ecology and management discuss how fire regimes have shaped and will continue to shape the distribution and abundance of Australia’s highly diverse plants and animals. Central to this is the exploration of the concept of the fire regime – the cumulative pattern of fires and their individual characteristics (fire type, frequency, intensity, season) and how variation in regime components affects landscapes and their constituent biota. Contributions by 44 authors explore a wide range of topics including classical themes such as pre-history and evolution, fire behaviour, fire regimes in key biomes, plant and animal life cycles, remote sensing and modelling of fire regimes, and emerging issues such as climate change and fire regimes, carbon dynamics and opportunities for managing fire regimes for multiple benefits. In the face of significant global change, the conservation of our native species and ecosystems requires an understanding of the processes at play when fires and landscapes interact. This book provides a comprehensive treatment of this complex science, in the context of one of the world’s most flammable continents.


Koedoe ◽  
2008 ◽  
Vol 50 (1) ◽  
Author(s):  
Greg G. Forsyth ◽  
Brian W. Van Wilgen

This paper provides an assessment of fire regimes in the Table Mountain National Park over the past four decades. We compiled a GIS database of all fires between 1970 and 2007 and analysed the fire regime in terms of the frequency, season and size of fires and the relationship between fire occurrence and fire weather. Most fires (90.5% of area burnt) occurred in summer and autumn, the ecologically acceptable season for fires. However, mean fire return intervals declined by 18.1 years, from 31.6 to 13.5 years, between the first and last decades of the record respectively. The area subjected to short (≤ six years) intervals between fires covered > 16% of the park in the last two decades of the record, compared to ~ 4% in the first two decades. A relatively small number of large fires dominated in terms of area burnt. Of the 373 fires recorded, 40 fires > 300 ha burnt 75% of the area, while 216 fires < 25 ha burnt 3.4% of the area. Fires occurred under a wide range of weather conditions, but large fires were restricted to periods of high fire danger. Prescribed burning was a relatively unimportant cause of fires, and most (> 85%) of the area burnt in wildfires. Areas subjected to short fire return intervals should be considered for management interventions. These could include the re-establishment of extirpated fire-sensitive species, the clearing of invasive alien plants and increased precautions for the prevention or rapid suppression of future accidental fires.


2018 ◽  
Vol 27 (6) ◽  
pp. 396 ◽  
Author(s):  
Christopher I. Roos ◽  
Andrew C. Scott

The historical and modern importance of crown fires in ponderosa pine and dry mixed-conifer forests of the south-west USA has been much debated. The microscopic reflectance of charcoal in polished blocks under oil shows promise as a semiquantitative proxy for fire severity using charcoal from post-fire landscapes. We measured the reflectance of 33 modern charcoal samples to evaluate (1) whether charcoal reflectance can distinguish between crown fires and surface fires in these forests; and (2) whether surface fires with masticated fuels burn with severities similar to surface fires in grass, litter and duff fuels. The charcoal analysed was primarily collected after wildland fires under two different conditions: (l) wildfires with moderate to high severity and crown fire behaviour (n = 17), and (2) prescribed fires with low to moderate severity but no crown fire behaviour (n = 16). Statistical analysis indicates that charcoal reflectance produced in crown fires significantly differs from surface fire charcoal, particularly surface fire charcoal formed in grass, duff and litter fuels. However, charcoal produced from surface fires in masticated fuels is indistinguishable from crown fire charcoal, suggesting that fires in areas that have experienced in situ mastication may have soil impacts similar to crown fires.


2008 ◽  
Vol 17 (6) ◽  
pp. 685 ◽  
Author(s):  
Richard J. Williams ◽  
Ross A. Bradstock

In the last decade, extensive fires have occurred on most continents, affecting a wide range of ecosystems. We convened a Symposium at the 3rd International Fire Ecology and Management Congress in 2006 to address the issue of large fires and their ecological consequences in landscapes. The 10 papers presented here variously discuss the place of large fires in the context of historical fire regimes, the heterogeneity of fire regime components that are associated with large fires, and the ecological consequences of large fires. The discussions cover a range of biomes, from tropical to temperate, across the world. Three consistent themes emerged: firstly, large fires are usually a part of the Historical Range of Variability; secondly, large fires are inherently heterogeneous, leaving footprints of spatial and temporal diversity that may influence landscapes for decades; and thirdly, large fires have been perceived as socially and ecologically ‘disastrous’, due to obvious and significant deleterious effects on life and property, and the scale of immediate environmental impact. However, the papers presented here indicate that the long-term ecological impacts of individual large fires are not necessarily disastrous. Crucial impacts of large fires on ecosystems may depend largely on their rate of recurrence as well as landscape-scale variation in severity. The incidence and characteristics of large fires may change in the future, as a consequence of global climate change, and other social drivers of landscape change.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-18
Author(s):  
A.S. Plotnikova ◽  
◽  
A.O. Kharitonova

The article is devoted to the description of the web-GIS for mapping fire regimes in the Pechora-Ilych reserve and its environs. The main purpose of the resource is to provide the results of mapping fire regimes in the designated area to a wide range of researchers in an accessible form. Web-GIS allows organizing and storing the received thematic spatial data. The resource performs research and educational functions. The structure of the web-GIS includes the following sections: the study area, fire frequency indicators, fire regimes, fire regime condition class, and fire cycles. The web GIS was created using the ArcGIS StoryMaps tool on the ArcGIS Online platform. All sections use data from the ArcGIS Living Atlas of the World. Web-GIS allows receiving reference information about the indicators of fire frequency, fire cycles and regimes, as well as their deviations within the boundaries of the Pechora-Ilych nature reserve, district forestries, and spatial units. In particular, the results of a retrospective statistical analysis of forest fire indicators within spatial units (fire frequency, mean fire interval, etc.) are available for users.


Sign in / Sign up

Export Citation Format

Share Document