Leaf area – sapwood area relationships in adjacent young Douglas-fir stands with different early growth rates

1987 ◽  
Vol 17 (2) ◽  
pp. 174-180 ◽  
Author(s):  
M. A. Espinosa Bancalari ◽  
D. A. Perry ◽  
John D. Marshall

The relationship between foliage area and sapwood basal area was studied in three adjacent 22-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands that differed in early growth rates. Sapwood width was fairly constant for most of the stem above the stump, but the number of annual rings in the sapwood decreased gradually with height. Sapwood area also decreased with increasing height in the tree, the stands differing significantly only at breast height. The proportion of heartwood from stump to near the base of the crown was significantly higher for the stand of fastest early growth. Ratios of leaf area to sapwood area were significantly higher for that stand and varied in every stem section, the ratio lower at breast height than at the base of the live crown. At the base of the crown, the ratio of leaf area to sapwood area was 1.33 and 1.57 times greater in the fast-growing stand than in the intermediate- and slow-growing stands, respectively. Leaf area was as closely related to dbh as to sapwood area at breast height. Sapwood area at the crown base was more accurate than sapwood area at breast height for predicting leaf area in the fast stand and was equally accurate in the other two stands. Ratios of leaf area to sapwood area correlated positively with sapwood ring width. However, because sapwood ring width also correlated closely with sapwood area, it did not improve predictive equations. The results suggest that the "pipe model" theory must be modified to account for the internal structure of the "pipe" and that caution should be exercised when using published leaf area to sapwood area ratios.

1985 ◽  
Vol 15 (5) ◽  
pp. 985-988 ◽  
Author(s):  
Ram Oren ◽  
Walter G. Thies ◽  
Richard H. Waring

Total stand sapwood basal area, a measure of competing canopy leaf area, was reduced 30% by laminated root rot induced by Phellinusweirii (Murr.) Gilb. in a heavily infected 40-year-old coastal stand of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) compared with that of a similar uninfected stand. Annual basal area increment per unit of sapwood area, an index of tree vigor, was expected to increase in uninfected trees in the infected stand as surrounding trees died from root rot; vigor of the uninfected trees did increase by an average of 30%, offsetting the reduction in canopy leaf area. This increase, although less than might be expected in an evenly spaced thinned stand, was sufficient to maintain stand basal area growth at levels similar to those of unthinned forests. These findings indicate that increased growth by residual trees must be taken into account when the impact of disease-induced mortality on stand production is assessed.


2007 ◽  
Vol 37 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
Kelsey Sherich ◽  
Amy Pocewicz ◽  
Penelope Morgan

Trees respond to edge-to-interior microclimate differences in fragmented forests. To better understand tree physiological responses to fragmentation, we measured ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws) and Douglas-fir ( Pseudotsuga menziesii (Mirbel) Franco) leaf area, crown ratios, sapwood area, basal area (BA) growth rates, and BA growth efficiency at 23 long-established (>50 year) forest edges in northern Idaho. Trees located at forest edges had more leaf area, deeper crowns, higher BA growth rates, and more sapwood area at breast height than interior trees. Ponderosa pine had significantly higher BA growth efficiency at forest edges than interiors, but Douglas-fir BA growth efficiency did not differ, which may relate to differences in photosynthetic capacity and drought and shade tolerance. Edge orientation affected BA growth efficiency, with higher values at northeast-facing edges for both species. Edge effects were significant even after accounting for variation in stand density, which did not differ between the forest edge and interior. Although edge trees had significantly greater canopy depth on their edge-facing than forest-facing side, sapwood area was evenly distributed. We found no evidence that growing conditions at the forest edge were currently subjecting trees to stress, but higher leaf area and deeper crowns could result in lower tolerance to future drought conditions.


1989 ◽  
Vol 19 (3) ◽  
pp. 392-396 ◽  
Author(s):  
Dan C. Thompson

The relationship of sapwood area to leaf area in lodgepole pine was examined across a variety of habitat types and stand densities in northwest Montana. No statistical differences were found between plots with regard to either habitat type or stand density. A nonlinear relationship was found between leaf area and sapwood area. Increasing amounts of sapwood were associated with a decrease in the leaf area–sapwood area ratio. A large amount of within-plot variation in the sapwood area–leaf area relationship was explained by differences between dominant trees and trees of other crown classes. Leaf area (LA) was best estimated by the equation LA = 0.12 × S − 0.0003 × S2 + 0.06 × S × D, where LA is leaf area, S is sapwood area, and D is the crown class (dominant). Differences between dominant and subdominant trees appear to be related to ring width and its associated permeability. Differences in sapwood area–leaf area equations among different studies may be due in part to differences in stand structure.


1995 ◽  
Vol 25 (6) ◽  
pp. 970-977 ◽  
Author(s):  
Annikki Mäkelä ◽  
Katri Virtanen ◽  
Eero Nikinmaa

The effects of the average ring width of sapwood, bole length, and stand density on the relationship between foliage biomass and sapwood area at four different stem positions were studied in a data set comprising 20 ca. 35-year-old Scots pine (Pinussylvestris L.) trees in southern Finland. The average ring width within sapwood had no effect on the foliagersapwood ratio inside the crown, but a correlation was found when sapwood was measured at breast height or 20% relative height. The distance of the measuring point from the crown base provided a bigger improvement of foliage biomass prediction from sapwood, a finding emphasizing the significance of the taper of sapwood along the bole. After accounting for the sapwood taper, no differences could be detected between thinned and unthinned stands, nor between breast height and 20% relative height.


2021 ◽  
Author(s):  
Stamatios Rafail Tziaferidis ◽  
Gavriil Spyroglou ◽  
Mariangela Fotelli ◽  
Kalliopi Radoglou

<p>Allometric equations relating a tree’s vascular system with its leaf area and dry weight are developed for numerous forest species, in order to link their hydraulic architecture to carbon and biomass allocation. In 1964, Shinozaki <em>et al.</em> published the Pipe Model Theory (PMT) according to which, a given amount of leaves is supported by and is directly proportional to the area of the conductive tissue of the trunk. The present study aimed at testing whether PMT applies for <em>R. pseudacacia</em> plantations established for restoration and carbon sequestration purposes. A total of 25 trees of black locust grown at the restored former open-cast mining areas of the lignite center of the Hellenic Public Power Corporation (HPPC) in Ptolemaida and Aminteo, NW Greece, were destructively sampled. For each tree we determined its leaf area, foliage dry weight, diameter at breast height, as well as the cross-sectional areas of the trunk, the sapwood and the current sapwood at the stump height (0.30m), the breast height (1.3m), in the middle of the stem, at the base of live crown, at 1/3 and 2/3 of the length of the crown. The relationships of leaf area and foliage dry weight with the different cross-sectional areas at the selected stem heights were tested with simple and multiple linear regression models at p<0.001.</p><p>Among all tested relationships, PMT was more strongly verified by the linear relationship estimating both leaf area and foliage dry weight by the total cross-sectional area at the middle of the stem (R<sup>2</sup>=0.81). Sapwood area was found to be a less strong estimator of leaf area and foliage dry weight. The best relationships between sapwood area and leaf area / foliage were established when measured at the 1/3 of the length of the crown (R<sup>2</sup>=0.70 and 0.77, for leaf area and dry weight, respectively). The widely used relationship of sapwood at breast height to both leaf area and weight was less strong in our study (R<sup>2</sup>=0.66 and 0.68, for leaf area and dry weight, respectively). Furthermore, our results were not consistent with the theory of Shinozaki et al. (1964) that the ratio of leaf area to sapwood area increases from the top of the tree to the base of crown, where it is stabilized until breast height. These deviations may be due to the age of the studied plantations which does not exceed 30 years and the properties of the growth substrate consisting mainly of depositions from the extraction of lignite. The strongest allometric models for the estimation of leaf area and weight by tree diameter were built at breast height (R<sup>2</sup>=0.72) and at the base of live crown (R<sup>2</sup>=0.73), respectively. In addition, the trees’ diameter at the base of live crown could be reliably estimated by their diameter at breast height (R<sup>2</sup>=0.78). Our results were only partly consistent with the PMT. However, the established relationships may be useful for modelling and assessment of carbon allocation, water balance and growth of black locust plantations in restoration sites.</p>


1985 ◽  
Vol 15 (6) ◽  
pp. 1181-1184 ◽  
Author(s):  
C. A. Blanche ◽  
J. D. Hodges ◽  
T. E. Nebeker

Stem cross-sectional sapwood area was linearly related to leaf area in loblolly pine. A better relationship was obtained using cross-sectional sapwood area taken at crown base than at breast height. The relationship was affected by time of sampling, with time of maximum needle biomass giving the best correlation. Specific leaf area (area in square centimetres per gram dry weight) was variable, but the mean of 95.32 cm2/g is comparable to reported values for other species. The leaf area – sapwood area ratio at breast height varies only slightly among individual trees so that a mean ratio of 0.29 can be utilized to accurately predict leaf area. The ratio between curent-year or previous-year sapwood production and leaf area (grams per square metre of foliage) was used as an indicator of tree vigor. Tree vigor values varied greatly (21 – 180 g/m2), but were normally distributed within this range.


1983 ◽  
Vol 13 (3) ◽  
pp. 384-389 ◽  
Author(s):  
H. Brix ◽  
A. K. Mitchell

A 24-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stand was treated with various levels and combinations of nitrogen fertilization and thinning. Over a period of 5–9 years after treatments, trees were sampled to determine effects on foliage quantity and sapwood characteristics at different stem heights together with their relationships. Sapwood width remained relatively constant up the stem where heartwood was present, but the number of annual rings it contained decreased with height. The sapwood width at breast height (bh) increased with stem diameter; treatments had little effect on percent sapwood at bh. The ratio of foliage mass to sapwood cross-sectional area changed for different portions of the crown and was lower when based on sapwood area at bh than at base of live crown. Significant linear relationships of foliage mass and area to sapwood area at bh were found, but relationships of foliage to basal area (bh) were just as close for all treatments; treatments significantly affected these relationships with control trees having the lowest regression slopes.


2004 ◽  
Vol 34 (11) ◽  
pp. 2217-2229 ◽  
Author(s):  
Douglas B Mainwaring ◽  
Douglas A Maguire

Basal area and height growth were analyzed for individual trees in uneven-aged ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex. Loud.) stands in central Oregon. Basal area growth was modeled as a function of other stand and tree variables to address three general objectives: (1) to compare the predictive ability of distance-dependent versus distance-independent stand density variables; (2) to determine the degree to which small trees negatively affect the growth of overstory trees; and (3) to test for differences in growth efficiency between species and between indices of spatial occupancy used to define efficiency (area potentially available, crown projection area, and a surrogate for total tree leaf area). Distance-dependent variables were found to improve growth predictions when added to models with only distance-independent variables, and small trees were found to have a quantifiably negative effect on the growth of larger trees. While volume growth efficiency declined with increasing levels of spatial occupancy for lodgepole pine, ponderosa pine volume growth efficiency was greatest at the highest levels of crown base sapwood area and crown projection area. The behavior in ponderosa pine resulted from the previously recognized correlation between tree height and total leaf area or crown size. The final statistical models distinguished between the positive effect of relative height and the negative effect of increasing tree size.


2018 ◽  
Vol 48 (7) ◽  
pp. 809-820 ◽  
Author(s):  
Neil P. Thompson ◽  
Kathy J. Lewis ◽  
Lisa M. Poirier

Drought tolerance of trees may be affected by competition, but most studies quantifying the relationship do not consider the effect of stem clustering. Trees are often clustered in interior Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco) forests near the grassland interface in central British Columbia due to past harvesting practices or habitat management for mule deer (Odocoileus hemionus hemionus (Rafinesque, 1817)). Climate change projections indicate continued increases in temperature, an outcome that would stress trees growing in dry environments. Trees placed in different states of competition by mechanical harvesting in the 1970s were sampled to provide a 40-year comparison of three levels of competition during 1–2 year droughts. Tree-ring analysis was used to assess the reduction in growth during drought years and resumption of growth in subsequent years. A clear separation of growth rates was evident between open-growing trees, trees on the edge of harvesting trails, and trees within the unharvested interior. Edge trees had intermediate growth rates but no differences were found in the long-term climate–growth relationship compared with open-growing trees. Both Edge and Open classes showed less relative growth reduction during droughts than Interior trees growing between harvest trails. Precipitation throughfall rates and competition for resources are likely driving short-term drought tolerance in combination with other factors.


1999 ◽  
Vol 29 (12) ◽  
pp. 1993-1996 ◽  
Author(s):  
Barbara L Gartner ◽  
Jeffrey J Morrell ◽  
Camille M Freitag ◽  
Rachel Spicer

Heartwood durability of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) was studied as a function of vertical and radial position in boles of trees with a wide range of leaf area/sapwood area ratios. Six 34-year-old trees were harvested from each of three plots established 14 years before: very dense, thinned, and thinned and fertilized. Heartwood samples from three radial positions and five heights were incubated with the decay fungus Postia placenta (Fr.) M. Larsen et Lombard. There were no significant differences in wood mass loss (decay resistance) by vertical or radial position. One could expect that trees with high leaf area/sapwood area could have the carbon to produce heartwood that is more resistant to decay than trees with lower leaf area/sapwood area. However, we found no relationship between leaf area above node 20, sapwood area there, or their ratio, and the decay resistance of outer heartwood at that node. These results suggest that, for young Douglas-fir trees, heartwood durability does not vary with position in the bole or with environments that alter the tree's balance of sapwood and leaf area. We suggest that young stands may thus be robust with respect to the effect of silvicultural regimes on heartwood durability.


Sign in / Sign up

Export Citation Format

Share Document