Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice

2012 ◽  
Vol 90 (11) ◽  
pp. 1544-1552 ◽  
Author(s):  
Saravanan Bhuvaneswari ◽  
Carani Venkatraman Anuradha

This study investigates the effects of astaxanthin (ASX) on insulin signaling and glucose metabolism in the liver of mice fed a high fat and high fructose diet (HFFD). Adult male Mus musculus mice of body mass 25–30 g were fed either normal chow or the HFFD. After 15 days, mice in each group were subdivided among 2 smaller groups and treated with ASX (2 mg·(kg body mass)–1) in olive oil for 45 days. At the end of 60 days, HFFD-fed mice displayed insulin resistance while ASX-treated HFFD animals showed marked improvement in insulin sensitivity parameters. ASX treatment normalized the activities of hexokinase, pyruvate kinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glycogen phosphorylase, and increased glycogen reserves in the liver. Liver tissue from ASX-treated HFFD-fed animals showed increased tyrosine phosphorylation and decreased serine phosphorylation of insulin receptor substrates (IRS)-1 and -2. ASX increased IRS 1/2 and phosphatidylinositol 3-kinase (PI3K) association and serine phosphorylation of Akt. In addition, ASX decreased HFFD-induced serine kinases (c-jun N-terminal kinase-1 and extracellular signal-regulated kinase-1). The results suggest that ASX treatment promotes the IRS–PI3K–Akt pathway of insulin signaling by decreasing serine phosphorylation of IRS proteins, and improves glucose metabolism by modulating metabolic enzymes.

2005 ◽  
Vol 288 (6) ◽  
pp. E1188-E1194 ◽  
Author(s):  
Betsy B. Dokken ◽  
Julie A. Sloniger ◽  
Erik J. Henriksen

Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 μM CT118637, Ki < 10 nM for GSK3α and GSK3β). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced ( P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR β-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3β serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.


2014 ◽  
Vol 17 (7) ◽  
pp. 749-757 ◽  
Author(s):  
Shi-Wei Hu ◽  
Ying-Ying Tian ◽  
Yao-Guang Chang ◽  
Zhao-Jie Li ◽  
Chang-Hu Xue ◽  
...  

2006 ◽  
Vol 20 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Jianying He ◽  
Isao Usui ◽  
Ken Ishizuka ◽  
Yukiko Kanatani ◽  
Kazuyuki Hiratani ◽  
...  

Abstract Proinflammatory cytokines are recently reported to inhibit insulin signaling causing insulin resistance. IL-1α is also one of the proinflammatory cytokines; however, it has not been clarified whether IL-1α may also cause insulin resistance. Here, we investigated the effects of IL-1α treatment on insulin signaling in 3T3-L1 adipocytes. IL-1α treatment up to 4 h did not alter insulin-stimulated insulin receptor tyrosine phosphorylation, whereas tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the association with phosphatidylinositol 3-kinase were partially inhibited with the maximal inhibition in around 15 min. IRS-1 was transiently phosphorylated on some serine residues around 15 min after IL-1α stimulation, when several serine kinases, IκB kinase, c-Jun-N-terminal kinase, ERK, and p70S6K were activated. Chemical inhibitors for these kinases inhibited IL-1α-induced serine phosphorylation of IRS-1. Tyrosine phosphorylation of IRS-1 was recovered only by the IKK inhibitor or JNK inhibitor, suggesting specific involvement of these two kinases. Insulin-stimulated Akt phosphorylation and 2-deoxyglucose uptake were not inhibited only by IL-1α. Interestingly, Akt phosphorylation was synergistically inhibited by IL-1α in the presence of IL-6. Taken together, short-term IL-1α treatment transiently causes insulin resistance at IRS-1 level with its serine phosphorylation. IL-1α may suppress insulin signaling downstream of IRS-1 in the presence of other cytokines, such as IL-6.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Arturo Bevilacqua ◽  
Mariano Bizzarri

In the past decades, both the importance of inositol for human health and the complex interaction between glucose and inositol have been the subject of increasing consideration. Glucose has been shown to interfere with cellular transmembrane transport of inositol, inhibiting, among others, its intestinal absorption. Moreover, intracellular glucose is required for de novo biosynthesis of inositol through the inositol-3-phosphate synthase 1 pathway, while a few glucose-related metabolites, like sorbitol, reduce intracellular levels of inositol. Furthermore, inositol, via its major isomersmyo-inositol and D-chiro-inositol, and probably some of its phosphate intermediate metabolites and correlated enzymes (like inositol hexakisphosphate kinase) participate in both insulin signaling and glucose metabolism by influencing distinct pathways. Indeed, clinical data support the beneficial effects exerted by inositol by reducing glycaemia levels and hyperinsulinemia and buffering negative effects of sustained insulin stimulation upon the adipose tissue and the endocrine system. Due to these multiple effects, myoIns has become a reliable treatment option, as opposed to hormonal stimulation, for insulin-resistant PCOS patients.


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2627-2636 ◽  
Author(s):  
Joseph Fomusi Ndisang ◽  
Ashok Jadhav

Insulin-mediated signal transduction is positively correlated to adiponectin, adenosine monophosphate-activated protein kinase (AMPK), and glucose-transporter-4 (GLUT4) but negatively to oxidative/inflammatory mediators such as nuclear factor-κB, activating-protein (AP)-1, AP-2, and c-Jun-N-terminal-kinase. Although hemeoxygenase (HO) suppresses oxidative insults, its effects on insulin-sensitizing agents like AMPK and GLUT4 remains unclear and were investigated using Goto-Kakizaki rats (GK), a nonobese insulin-resistant type-2 diabetic model. HO was induced with hemin or inhibited with chromium mesoporphyrin (CrMP). The application of hemin to GK rats evoked a 3-month antidiabetic effect, whereas the HO-inhibitor, CrMP, exacerbated hyperglycemia and nullified insulin-signaling/glucose metabolism. Interestingly, the antidiabetic was accompanied by a paradoxical increase of insulin alongside the potentiation of insulin-sensitizing agents such as adiponectin, AMPK, and GLUT4 in the gastrocnemius muscle. Furthermore, hemin enhanced mediators/regulators of insulin signaling like cGMP and cAMP and suppressed oxidative insults by up-regulating HO-1, HO activity, superoxide dismutase, catalase, and the total antioxidant capacity in the gastrocnemius muscle. Accordingly, oxidative markers/mediators including nuclear factor-κB, AP-1, AP-2, c-Jun-N-terminal-kinase, and 8-isoprostane were abated, whereas CrMP annulled the cytoprotective and antidiabetic effects of hemin. Correspondingly, ip glucose tolerance, insulin tolerance, and homeostasis model assessment insulin resistance analyses revealed improved glucose tolerance, reduced insulin intolerance, enhanced insulin sensitivity, and reduced insulin resistance in hemin-treated GK rats. In contrast, CrMP, abolished the insulin-sensitizing effects and restored and/or exacerbated insulin resistance. Our study unveils a 3-month enduring antidiabetic effect of hemin and unmasks the synergistic interaction among the HO system, adiponectin, AMPK, and GLUT4 that could be explored to enhance insulin signaling and improve glucose metabolism in insulin-resistant diabetes.


Author(s):  
Mutlur Krishnamoorthy Radika ◽  
Carani Venkatraman Anuradha

AbstractThe energy status of the cell is regulated by the energy sensing network constituted by AMP-activated protein kinase (AMPK), the NADAdult male albino Wistar rats with body weight of 150–180 g were fed high-fructose diet (HFD) for 60 days to induce insulin resistance. Rats fed HFD were divided into two and were treated or untreated with AICAR (0.7 mg/kg bw, i.p.) for the last 2 weeks.Insulin resistant rats displayed increased glucose and insulin levels and reduced tyrosine phosphorylation of insulin resistance receptor and insulin receptor substrate 1. The downstream signaling and glucose transport were also affected. Phosphorylation of AMPK, SIRT1 protein abundance and mRNA expression of PGC-1α were reduced. Treatment with AICAR reduced hyperglycemia and hyperinsulinemia and improved the activation of the key molecules of insulin signaling. Improved action of energy sensing network was noted after AICAR treatment. AICAR showed higher binding affinity with Akt (−8.2 kcal/mol) than with AMPK or insulin receptor (−8.0 kcal/mol) in the in silico study.The findings suggest that AICAR, the AMPK activator, influences insulin signaling proteins and molecules involved in energy modulation during insulin resistance.


2002 ◽  
Vol 93 (2) ◽  
pp. 773-781 ◽  
Author(s):  
Juleen R. Zierath

This review will provide insight on the current understanding of the intracellular signaling mechanisms by which exercise training increases glucose metabolism and gene expression in skeletal muscle. Participation in regular exercise programs can have important clinical implications, leading to improved health in insulin-resistant persons. Evidence is emerging that insulin signal transduction at the level of insulin receptor substrates 1 and 2, as well as phosphatidylinositol 3-kinase, is enhanced in skeletal muscle after exercise training. This is clinically relevant because insulin signaling is impaired in skeletal muscle from insulin-resistant Type 2 diabetic and obese humans. The molecular mechanism for enhanced insulin-stimulated glucose uptake after exercise training may be partly related to increased expression and activity of key proteins known to regulate glucose metabolism in skeletal muscle. Exercise also leads to an insulin-independent increase in glucose transport, mediated in part by AMP-activated protein kinase. Changes in protein expression may be related to increased signal transduction through the mitogen-activated protein kinase signaling cascades, a pathway known to regulate transcriptional activity. Understanding the molecular mechanism for the activation of insulin signal transduction pathways after exercise training may provide novel entry points for new strategies to enhance glucose metabolism and for improved health in the general population.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 663 ◽  
Author(s):  
Shaghayegh Norouzi ◽  
John Adulcikas ◽  
Darren Henstridge ◽  
Sabrina Sonda ◽  
Sukhwinder Sohal ◽  
...  

Background: The zinc transporter Zip7 modulates zinc flux and controls cell signaling molecules associated with glucose metabolism in skeletal muscle. The present study evaluated the role of Zip7 in cell signaling pathways involved in insulin-resistant skeletal muscle and mice fed a high-fat diet. Methods: Insulin-resistant skeletal muscle cells were prepared by treatment with an inhibitor of the insulin receptor, HNMPA-(AM)3 or palmitate, and Zip7 was analyzed along with pAkt, pTyrosine and Glut4. Similarly, mice fed normal chow (NC) or a high-fat diet (HFD) were also analyzed for protein expression of Glut4 and Zip7. An overexpression system for Zip7 was utilized to determine the action of this zinc transporter on several genes implicated in insulin signaling and glucose control. Results: We identified that Zip7 is upregulated by glucose in normal skeletal muscle cells and downregulated in insulin-resistant skeletal muscle. We also observed (as expected) a decrease in pAkt and Glut4 in the insulin-resistant skeletal muscle cells. The overexpression of Zip7 in skeletal muscle cells led to the modulation of key genes involved in the insulin signaling axis and glucose metabolism including Akt3, Dok2, Fos, Hras, Kras, Nos2, Pck2, and Pparg. In an in vivo mouse model, we identified a reduction in Glut4 and Zip7 in the skeletal muscle of mice fed a HFD compared to NC controls. Conclusions: These data suggest that Zip7 plays a role in skeletal muscle insulin signaling and is downregulated in an insulin-resistant, and HFD state. Understanding the molecular mechanisms of Zip7 action will provide novel opportunities to target this transporter therapeutically for the treatment of insulin resistance and type 2 diabetes.


2018 ◽  
Vol 239 (3) ◽  
pp. 313-324 ◽  
Author(s):  
Lewin Small ◽  
Henry Gong ◽  
Christian Yassmin ◽  
Gregory J Cooney ◽  
Amanda E Brandon

One major factor affecting physiology often overlooked when comparing data from animal models and humans is the effect of ambient temperature. The majority of rodent housing is maintained at ~22°C, the thermoneutral temperature for lightly clothed humans. However, mice have a much higher thermoneutral temperature of ~30°C, consequently data collected at 22°C in mice could be influenced by animals being exposed to a chronic cold stress. The aim of this study was to investigate the effect of housing temperature on glucose homeostasis and energy metabolism of mice fed normal chow or a high-fat, obesogenic diet (HFD). Male C57BL/6J(Arc) mice were housed at standard temperature (22°C) or at thermoneutrality (29°C) and fed either chow or a 60% HFD for 13 weeks. The HFD increased fat mass and produced glucose intolerance as expected but this was not exacerbated in mice housed at thermoneutrality. Changing the ambient temperature, however, did alter energy expenditure, food intake, lipid content and glucose metabolism in skeletal muscle, liver and brown adipose tissue. Collectively, these findings demonstrate that mice regulate energy balance at different housing temperatures to maintain whole-body glucose tolerance and adiposity irrespective of the diet. Despite this, metabolic differences in individual tissues were apparent. In conclusion, dietary intervention in mice has a greater impact on adiposity and glucose metabolism than housing temperature although temperature is still a significant factor in regulating metabolic parameters in individual tissues.


Sign in / Sign up

Export Citation Format

Share Document