Patterns of muscular and motor cortical activity during a simple arm movement in the monkey

1981 ◽  
Vol 59 (7) ◽  
pp. 748-756 ◽  
Author(s):  
Y. Lamarre ◽  
G. Spidalieri ◽  
J. P. Lund

This article describes the behavior of motor cortex neurons recorded in macaque monkeys (Macaca mulatta) which had been trained to make extension and flexion movements about the elbow in response to auditory, visual, or somesthetic cues. The pattern of activity of 65% of those movement-related neurons which were recorded during both flexion and extension was reciprocally related to the direction of movement. However, the movements of extension and flexion were made by co-contraction of the biceps and triceps in a pattern that did not match that of the motor cortex neurons. The majority of motor cortex neurons had firing frequencies that were related to movement parameters but by their nature could not be directly involved in the control of α motoneurons in both directions of movement. We suggest that they could, instead, control the fusimotor system. It is more likely that α motoneurons are controlled by the 35% of motor cortex neurons that, like the muscles, do not show reciprocal patterns of activity for movements in opposite directions.

2003 ◽  
Vol 89 (2) ◽  
pp. 1136-1142 ◽  
Author(s):  
Yoram Ben-Shaul ◽  
Eran Stark ◽  
Itay Asher ◽  
Rotem Drori ◽  
Zoltan Nadasdy ◽  
...  

Although previous studies have shown that activity of neurons in the motor cortex is related to various movement parameters, including the direction of movement, the spatial pattern by which these parameters are represented is still unresolved. The current work was designed to study the pattern of representation of the preferred direction (PD) of hand movement over the cortical surface. By studying pairwise PD differences, and by applying a novel implementation of the circular variance during preparation and movement periods in the context of a center-out task, we demonstrate a nonrandom distribution of PDs over the premotor and motor cortical surface of two monkeys. Our analysis shows that, whereas PDs of units recorded by nonadjacent electrodes are not more similar than expected by chance, PDs of units recorded by adjacent electrodes are. PDs of units recorded by a single electrode display the greatest similarity. Comparison of PD distributions during preparation and movement reveals that PDs of nearby units tend to be more similar during the preparation period. However, even for pairs of units recorded by a single electrode, the mean PD difference is typically large (45° and 75° during preparation and movement, respectively), so that a strictly modular representation of hand movement direction over the cortical surface is not supported by our data.


2018 ◽  
Author(s):  
Ke Chen ◽  
Roberto Vincis ◽  
Alfredo Fontanini

ABSTRACTDysfunction of motor cortices is thought to contribute to motor disorders such as Parkinson’s disease (PD). However, little is known on the link between cortical dopaminergic loss, abnormalities in motor cortex neural activity and motor deficits. We address the role of dopamine in modulating motor cortical activity by focusing on the anterior lateral motor cortex (ALM) of mice performing a cued-licking task. We first demonstrate licking deficits and concurrent alterations of spiking activity in ALM of mice with unilateral depletion of dopaminergic neurons (i.e., mice injected with 6-OHDA into the medial forebrain bundle). Hemi-lesioned mice displayed delayed licking initiation, shorter duration of licking bouts, and lateral deviation of tongue protrusions. In parallel with these motor deficits, we observed a reduction in the prevalence of cue responsive neurons and altered preparatory activity. Acute and local blockade of D1 receptors in ALM recapitulated some of the key behavioral and neural deficits observed in hemi-lesioned mice. Altogether, our data show a direct relationship between cortical D1 receptor modulation, cue-evoked and preparatory activity in ALM, and licking initiation.SIGNIFICANCE STATEMENTThe link between dopaminergic signaling, motor cortical activity and motor deficits is not fully understood. This manuscript describes alterations in neural activity of the anterior lateral motor cortex (ALM) that correlate with licking deficits in mice with unilateral dopamine depletion or with intra-ALM infusion of dopamine antagonist. The findings emphasize the importance of cortical dopaminergic modulation in motor initiation. These results will appeal not only to researchers interested in cortical control of licking, but also to a broader audience interested in motor control and dopaminergic modulation in physiological and pathological conditions. Specifically, our data suggest that dopamine deficiency in motor cortex could play a role in the pathogenesis of the motor symptoms of Parkinson’s disease.


1997 ◽  
Vol 9 (3) ◽  
pp. 607-621 ◽  
Author(s):  
Siming Lin ◽  
Jennie Si ◽  
A. B. Schwartz

The population vector method has been developed to combine the simultaneous direction-related activities of a population of motor cortical neurons to predict the trajectory of the arm movement. In this article, we consider a self-organizing model of a neural representation of the arm trajectory based on neuronal discharge rates. A self-organizing feature map (SOFM) is used to select the optimal set of weights in the model to determine the contribution of an individual neuron to an overall movement representation. The correspondence between movement directions and discharge patterns of the motor cortical neurons is established in the output map. The topology-preserving property of the SOFM is used to analyze the recorded data of a behaving monkey. The data used in this analysis were taken while the monkey was tracing spirals and doing center→out movements. The arm trajectory could be well predicted using such a statistical model based on the motor cortex neuronal firing information. The SOFM method is compared with the population vector method, which extracts information related to trajectory by assuming that each cell has a fixed preferred direction during the task. This implies that these cells are acting along lines labeled only for direction. However, extradirectional information is carried in these cell responses. The SOFM has the capability of extracting not only direction-related information but also other parameters that are consistently represented in the activity of the recorded population of cells.


2000 ◽  
Vol 78 (11) ◽  
pp. 923-933 ◽  
Author(s):  
Stephen H Scott

Reaching movements to spatial targets require motor patterns at the shoulder to be coordinated carefully with those at the elbow to smoothly move the hand through space. While the motor cortex is involved in this volitional task, considerable debate remains about how this cortical region participates in planning and controlling movement. This article reviews two opposing interpretations of motor cortical function during multi-joint movements. On the one hand, studies performed predominantly on single-joint movement generally support the notion that motor cortical activity is intimately involved in generating motor patterns at a given joint. In contrast, studies on reaching demonstrate correlations between motor cortical activity and features of movement related to the hand, suggesting that the motor cortex may be involved in more global features of the task. Although this latter paradigm involves a multi-joint motor task in which neural activity is correlated with features of movement related to the hand, this neural activity is also correlated to other movement variables. Therefore it is difficult to assess if and how the motor cortex contributes to the coordination of motor patterns at different joints. In particular, present paradigms cannot assess whether motor cortical activity contributes to the control of one joint or multiple joints during whole-arm tasks. The final point discussed in this article is the development of a new experimental device (KINARM) that can both monitor and manipulate the mechanics of the shoulder and elbow independently during multi-joint motor tasks. It is hoped that this new device will provide a new approach for examining how the motor cortex is involved in motor coordination.Key words: reaching movements, biomechanics, motor coordination, proximal arm.


2018 ◽  
Author(s):  
Britton Sauerbrei ◽  
Jian-Zhong Guo ◽  
Matteo Mischiati ◽  
Wendy Guo ◽  
Mayank Kabra ◽  
...  

AbstractSkillful control of movement is central to our ability to sense and manipulate the world. A large body of work in nonhuman primates has demonstrated that motor cortex provides flexible, time-varying activity patterns that control the arm during reaching and grasping. Previous studies have suggested that these patterns are generated by strong local recurrent dynamics operating autonomously from inputs during movement execution. An alternative possibility is that motor cortex requires coordination with upstream brain regions throughout the entire movement in order to yield these patterns. Here, we developed an experimental preparation in the mouse to directly test these possibilities using optogenetics and electrophysiology during a skilled reach-to-grab-to-eat task. To validate this preparation, we first established that a specific, time-varying pattern of motor cortical activity was required to produce coordinated movement. Next, in order to disentangle the contribution of local recurrent motor cortical dynamics from external input, we optogenetically held the recurrent contribution constant, then observed how motor cortical activity recovered following the end of this perturbation. Both the neural responses and hand trajectory varied from trial to trial, and this variability reflected variability in external inputs. To directly probe the role of these inputs, we used optogenetics to perturb activity in the thalamus. Thalamic perturbation at the start of the trial prevented movement initiation, and perturbation at any stage of the movement prevented progression of the hand to the target; this demonstrates that input is required throughout the movement. By comparing motor cortical activity with and without thalamic perturbation, we were able to estimate the effects of external inputs on motor cortical population activity. Thus, unlike pattern-generating circuits that are local and autonomous, such as those in the spinal cord that generate left-right alternation during locomotion, the pattern generator for reaching and grasping is distributed across multiple, strongly-interacting brain regions.


Author(s):  
Rachel C. Yuan ◽  
Sarah W. Bottjer

ABSTRACTA region within songbird cortex, AId (dorsal intermediate arcopallium), is functionally analogous to motor cortex in mammals and has been implicated in vocal learning during development. AId thus serves as a powerful model for investigating motor cortical contributions to developmental skill learning. We made extracellular recordings in AId of freely behaving juvenile zebra finches and evaluated neural activity during diverse motor behaviors throughout entire recording sessions, including song production as well as hopping, pecking, preening, fluff-ups, beak interactions with cage objects, scratching, and stretching. A large population of single neurons showed significant modulation of activity during singing relative to quiescence. In addition, AId neurons demonstrated heterogeneous response patterns that were evoked during multiple movements, with single neurons often demonstrating excitation during one movement type and suppression during another. Lesions of AId do not disrupt vocal motor output or impair generic movements, suggesting that the responses observed during active behavior do not reflect direct motor drive. Consistent with this idea, we found that some AId neurons showed differential activity during pecking movements depending on the context in which pecks occurred, suggesting that AId circuitry encodes diverse inputs beyond generic motor parameters. Moreover, we found evidence of neurons that did not respond during discrete movements but were nonetheless modulated during active behavioral states compared to quiescence. Taken together, our results support the idea that AId neurons are involved in sensorimotor integration of external sensory inputs and/or internal feedback cues to help modulate goal-directed behaviors.SIGNIFICANCE STATEMENTMotor cortex across taxa receives highly integrated, multi-modal information and has been implicated in both execution and acquisition of complex motor skills, yet studies of motor cortex typically employ restricted behavioral paradigms that target select movement parameters, preventing wider assessment of the diverse sensorimotor factors that can affect motor cortical activity. Recording in AId of freely behaving juvenile songbirds that are actively engaged in sensorimotor learning offers unique advantages for elucidating the functional role of motor cortical neurons. The results demonstrate that a diverse array of factors modulate motor cortical activity and lay important groundwork for future investigations of how multi-modal information is integrated in motor cortical regions to contribute to learning and execution of complex motor skills.


Author(s):  
Matthew G. Perich ◽  
Sara Conti ◽  
Marion Badi ◽  
Andrew Bogaard ◽  
Beatrice Barra ◽  
...  

ABSTRACTBehavior relies on continuous influx of sensory information about the body and the environment. In primates, cortex integrates somatic feedback to accurately reach and manipulate objects. Yet, in many experimental regimes motor cortex seems paradoxically to operate as a feedforward, rather than feedback-driven, system. Here, we recorded simultaneously from motor and somatosensory cortex as monkeys performed a naturalistic reaching and object interaction behavior. We studied how unexpected feedback from behavioral errors influences cortical dynamics. Motor cortex generally exhibited robust feedforward dynamics, yet displayed feedback-driven dynamics surrounding correction of behavioral errors. We then decomposed motor cortical activity into orthogonal subspaces capturing communication with somatosensory cortex or behavior-generating dynamics. During error correction, the communication subspace became feedback-driven, while the behavioral subspace maintained feedforward dynamics. We therefore demonstrate that cortical activity is compartmentalized within distinct subspaces that shape the population dynamics, enabling flexible integration of salient inputs with ongoing activity for robust behavior.


Physiology ◽  
1999 ◽  
Vol 14 (2) ◽  
pp. 64-68
Author(s):  
Apostolos P. Georgopoulos

Motor cortical activity relates to static motor parameters (isometric force, limb position) under static conditions but predominantly to dynamic parameters (change of force, limb velocity) under dynamic conditions. This dual relation conceptually unifies the role of motor cortex in the control of isometric force and movement.


2001 ◽  
Vol 13 (3) ◽  
pp. 306-318 ◽  
Author(s):  
Nicholas L. Port ◽  
Wolfgang Kruse ◽  
Daeyeol Lee ◽  
Apostolos P. Georgopoulos

The single-unit activity of 831 cells was recorded in the arm area of the motor cortex of tow monkeys while the monkeys intercepted a moving visual stimulus (interception task) or remained immobile during presentation of the same moving stimulus (no-go task). The moving target traveled on an oblique path from either lower corner of a screen toward the vertical meridian, and its movement time (0.5,1.0, or 1.5 sec) and velocity profile (accelerating, decelerating, or constant velocity) were pseudorandomly varied. The moving target had to be intercepted within 130 msec of target arrival at an interception point. By comparing motor cortical activity at the single-neuron tasks, we tested whether information about parameters of moving target is represented in the primary motor cortex to generate appropriate motor responses. A substantial number of neurons displayed modulation of their activity during the no-go task, and this activity was often affected by the stimulus parameters. These results suggest a role of motor cortex in specifying the timing of movement initiation based on information about target motion. In addition, there was a lack of systematic relation between the onset times of neural activity in the interception and no-go task, suggesting that processing of information concerning target motion and generation of hand movement occurs in parallel. Finally, the activity in the most motor cortical neurons was modulated according to an estimate of the time-to-target interception, raising the possibility that time-to-interception may be coded in the motor cortical activity.


Sign in / Sign up

Export Citation Format

Share Document