Effect of acute changes in the PaCO2 on acid–base parameters in normal dogs and dogs with metabolic acidosis or alkalosis

1983 ◽  
Vol 61 (2) ◽  
pp. 166-173 ◽  
Author(s):  
M. Bercovici ◽  
C. B. Chen ◽  
M. B. Goldstein ◽  
B. J. Steinbaugh ◽  
M. L. Halperin

There is a linear relationship between the [Formula: see text] and blood hydrogen ion concentration in normal dogs, but for theoretical reasons to be discussed, we questioned whether this relationship would apply in animals with metabolic acidosis or alkalosis. To study this in more detail, animals were divided into three groups: normal, metabolically acidotic, and metabolically alkalotic. Following anesthesia and bilateral ureteral ligation, dogs were intubated and ventilated to produce acute steady-state [Formula: see text] values corresponding to the range observed during disease states. Changes in the volume and electrolyte composition of the gastrointestinal fluid and urine as well as the concentration and distribution of lactate were evaluated in all experiments. We observed the previously described linear relationship between the [Formula: see text] and blood hydrogen ion concentration in normal dogs, but the slope of the regression line differed significantly from those of dogs with metabolic acidosis and metabolic alkalosis. On the other hand, there was a consistent relationship between the ratio of the [Formula: see text] values, but not the absolute [Formula: see text], and the change in the plasma bicarbonate concentration over a wide range of [Formula: see text] values in all groups of dogs. The chemical basis for these observations will be discussed.

Author(s):  
C. F. A. Pantin ◽  
Lancelot T. Hogben

1. A simple colorimetric method for plotting the dissociation curve of haemocyanin is indicated. The limits of error are within 5 per cent. The simplicity of the method commends it for laboratory class work.2. The effect of hydrogen ion concentration on the dissociation of the hsemocyanins of the crustacean Palinurus and the pulmonate Helix have been compared. In the snail change of hydrogen ion concentration over a wide range was not found to affect the dissociation of the hsemocyanin: in 'the crustacean there is a marked effect similar to that seen in the dissociation of hæmoglobin.3. The similarity of crustacean hsemocyanin to haemoglobin is also seen in that increasing temperature depresses the dissociation curve. The effects of certain salts upon haemocyanin. have also been recorded.


1968 ◽  
Vol 14 (8) ◽  
pp. 817-821 ◽  
Author(s):  
B. T. Khouw ◽  
H. D. McCurdy Jr.

The physical and nutritional requirements for growth of Hexamita inflata have been studied in axenic cultures. The flagellate was capable of growing over a wide range of temperature (5 °C to 25 °C), of hydrogen ion concentration (pH 4.5 to 8.5), and of salinity (3 to 28‰); and required a reducing or anaerobic environment. The requirement of an egg-yolk suspension for growth was partially satisfied by unsaturated fatty acids. Attempts to replace the peptone by mixtures of amino acids were not successful. A simple medium containing a vitamin mixture, linoleic acid, glucose, cysteine, peptone, and salt has been formulated.


1931 ◽  
Vol 15 (2) ◽  
pp. 119-124 ◽  
Author(s):  
William H. Cole ◽  
James B. Allison

1. The reaction of the catfish, Schilbeodes gyrinus Mitchill, to hydrochloric acid over a wide range of concentrations (from pH 1.82 to pH 6.83) has been studied under experimental conditions which reduced to a minimum all other stimuli. 2. As the [H+J increases within the limits mentioned, the reaction time of the fish decreases. In other words, the rate of the stimulation processes is an increasing function of the hydrogen ion concentration. 3. The effective stimulus is the hydrogen ion, since NaCl solutions of equivalent concentration were not stimulating. 4. Stimulation by hydrochloric acid is therefore correlated with the potential of the cation resulting from dissociation of the acid molecule.


2020 ◽  
pp. 2182-2198
Author(s):  
Julian Seifter

The normal pH of human extracellular fluid is maintained within the range of 7.35 to 7.45. The four main types of acid–base disorders can be defined by the relationship between the three variables, pH, Pco2, and HCO3 –. Respiratory disturbances begin with an increase or decrease in pulmonary carbon dioxide clearance which—through a shift in the equilibrium between CO2, H2O, and HCO3 –—favours a decreased hydrogen ion concentration (respiratory alkalosis) or an increased hydrogen ion concentration (respiratory acidosis) respectively. Metabolic acidosis may result when hydrogen ions are added with a nonbicarbonate anion, A−, in the form of HA, in which case bicarbonate is consumed, or when bicarbonate is removed as the sodium or potassium salt, increasing hydrogen ion concentration. Metabolic alkalosis is caused by removal of hydrogen ions or addition of bicarbonate. Laboratory tests usually performed in pursuit of diagnosis, aside from arterial blood gas analysis, include a basic metabolic profile with electrolytes (sodium, potassium, chloride, bicarbonate), blood urea nitrogen, and creatinine. Calculation of the serum anion gap, which is determined by subtracting the sum of chloride and bicarbonate from the serum sodium concentration, is useful. The normal value is 10 to 12 mEq/litre. An elevated value is diagnostic of metabolic acidosis, helpful in the differential diagnosis of the specific metabolic acidosis, and useful in determining the presence of a mixed metabolic disturbance. Acid–base disorders can be associated with (1) transport processes across epithelial cells lining transcellular spaces in the kidney, gastrointestinal tract, and skin; (2) transport of acid anions from intracellular to extracellular spaces—anion gap acidosis; and (3) intake.


1975 ◽  
Vol 229 (2) ◽  
pp. 344-349 ◽  
Author(s):  
KM Riegle ◽  
RL Clancy

The effect of norepinephrine (NE) on the intracellular hydrogen ion concentration [H+]i of isolated rat hearts perfused with a modified Krebs-Henseleit solution (SHS) was determined. The [H+]i was calculated with the [14C]-dimethyloxazolidinedione method. Respiratory or metabolic acidosis was produced by equilibrating the KHS with 20% C02 or decreasing the [HC03-] of the KHS, respectively. Three types of experiments were carried out: 1) beta blockade--MJ 1999 (Sotalol) was added to the KHS; 2) control--no pharmacological treatment; and 3) NE-norepinephrine was added to the KHS. The effective CO2 buffer values (delta[HC03-]i/deltapHi) during respiratory acidosis were: beta blockade, 11; control, 35; and NE, 84. The production of metabolic acidosis resulted in the following [H+]i changes: beta blockade, 52 mM; control, 60 nM; and NE 7 nM. These results suggest that NE markedly attenuates the changes in [H+]i accompanying respiratory and metabolic acidosis and may account in part for previous observations that the effective C02 buffer value of cardiac muscle in vivo is greater than that in vitro.


Perfusion ◽  
2004 ◽  
Vol 19 (3) ◽  
pp. 145-152 ◽  
Author(s):  
R Peter Alston ◽  
Laura Cormack ◽  
Catherine Collinson

Metabolic acidosis is a frequent complication of cardio-pulmonary bypass (CPB). Commonly, its cause is ascribed to hypoperfusion; however, iatrogenic causes, related to the composition and volume of intravascular fluids that are administered, are increasingly being recognized. The aim of this study was to determine if metabolic acidosis during CPB was associated with hypoperfusion, change in strong ion difference (SID) or haemodilution. Forty-nine patients undergoing cardiac surgery using CPB in the Royal Infirmary of Edinburgh (RIE) or the HCI, Clydebank were included in the study. Arterial blood samples were aspirated before induction of anaesthesia and the end of CPB. Samples were subjected to blood gas analysis and measurement of electrolytes and lactate. Changes in concentrations were then calculated. Change variables that were found to be significant (p B-0.1) univariate correlates of the change in hydrogen ion concentration were identified and entered into a multivariate regression model with hydrogen ion concentra tion at the end of CPB as the outcome variable (r2=0.65, p<0.001). Change variance in hydrogen ion concentration was created by first entering the baseline hydrogen ion concentration into the model. Next, any variance resulting from the respiratory component of acidosis was removed by entering the change in arterial carbon dioxide tension (regression coefficient (β)=0.67, p<0.01). Change in SID (β=-0.34, p<0.01) and surgical institution (β=-0.40, p<0.01) were then found to be predictors of the remaining variance whilst change in concentration of lactate (β in=0.16, p=0.07) and volume of intravascular fluid that was administered (β=-0.07, p=0.52) were rejected from the model. These findings suggest that the metabolic acidosis developing during CPB is partially the result of iatrogenic decrease in SID rather than hypoperfusion, as estimated by lactate concentration, or haemodilution.


1974 ◽  
Vol 46 (1) ◽  
pp. 113-123 ◽  
Author(s):  
J. M. Bone ◽  
J. Cowie ◽  
Anne T. Lambie ◽  
J. S. Robson

1. An analysis was made of the relationship which exists between arterial [H+], Pco2 and [HCO3−] in twenty-five patients with stable metabolic acidosis and alkalosis and in three normal subjects. 2. Contrary to previous reports, the relationship between Pco2 and [H+] was nonlinear and could best be described in terms of a rectangular hyperbola (Pco2 = 962/([H+]-12). 3. The relationship between Pco2 and [HCO3−] was curvilinear and best described by the quadratic function 23.8 (Pco2)2−12Pco2[HCO3−] −962 [HCO3−] = 0. 4. The small acute changes in [H+],−[HCO3−] and Pco2 produced by infusion of the weak organic acid 5,5−dimethyl 2,4−oxazolidinedione (DMO) could be predicted from the curvilinear regression.


1926 ◽  
Vol 9 (5) ◽  
pp. 709-714 ◽  
Author(s):  
Baldwin Lucke ◽  
Morton McCutcheon

1. The effect of HCl, NaOH, CO2, and NH3 on the volume of unfertilized Arbacia eggs was tested over a wide range of pH values. 2. No swelling occurred, except in HCl solutions, and there not until after injury or death had occurred. 3. Whereas the volume of erythrocytes and of proteins such as gelatin is known to be dependent on the pH of the solution, such a relation does not exist in the case of living and uninjured cells, at least of the type tested.


Perfusion ◽  
2007 ◽  
Vol 22 (6) ◽  
pp. 385-389 ◽  
Author(s):  
RP Alston ◽  
C Theodosiou ◽  
K Sanger

Background and objective: Previously, it was noted that changing the solutions used for priming and intravascular volume replacement from Hartmann’s to Ringer’s resulted in a more profound metabolic acidosis developing during cardiopulmonary bypass (CPB). The aim of this study was to examine the effects of changing the solutions back to Hartmann’s on metabolic acidosis that develops during CPB in patients undergoing heart surgery. Methods: Two groups of patients were studied sequentially: the first received Ringer’s (n = 63) and the second Hartmann’s solution (n = 66). Arterial blood samples were taken before induction of anaesthesia and towards the end of CPB. Samples were analysed in a blood gas analyser. Results: Hydrogen ion concentration increased from 38 (4) to 41 (7) mm/L in the Ringer’s group, but decreased from 38 (5) to 36 (6) mmol L-1 in the Hartmann’s group. Changes in PaCO2 (0.77, p < 0.001) and volume of fluid administered (r = 0.23, p < 0.01) were significant univariate correlates of change in hydrogen ion concentration, but haemoglobin concentration was not (r < 0.01, p = 0.97). Analysis of variance for repeated measures found significant between subject effects on the change in hydrogen ion concentration during CPB caused by the choice of intravascular solution used (p < 0.001) and PaCO2 (p = 0.001), but not as a result of the volume of solution administered (p > 0.10). Conclusions: Changing the solutions used for priming and intravascular volume replacement from Ringer’s to Hartmann’s was associated with a reduction in metabolic acidosis that developed during CPB.


Sign in / Sign up

Export Citation Format

Share Document