A test of hypotheses based on optimal foraging considerations for a diving mammal using a novel experimental approach

2003 ◽  
Vol 81 (11) ◽  
pp. 1799-1807 ◽  
Author(s):  
Leslie A Cornick ◽  
Markus Horning

The response of marine predators to changes in fine-scale prey distribution is poorly understood. Precipitous declines in marine apex predators necessitate a better understanding of the magnitude of fluctuations in prey availability that are within the compensatory behavioural plasticity of predators. We experimentally manipulated the fine-scale prey field for a marine carnivore in a controlled, captive setting and examined changes in behaviour and efficiency with changes in prey encounter rate. We hypothesized (i) a minimum prey encounter rate below which the cost of foraging always exceeds the benefit, (ii) foraging effort should increase with increasing prey encounter rates, and (iii) a maximum threshold prey encounter rate at which foraging efficiency is optimized. Dive duration, foraging time, and dive and foraging efficiency increased significantly with increasing prey encounter rate up to an asymptote of ~13 fish per dive cycle, supporting two of the three hypotheses. The results also support predicted responses to changing prey encounter rates derived from an optimal foraging model for diving animals and are the first experimental validation of optimal foraging model predictions in a marine mammal. We believe that these results provide new insight and suggest new experimental techniques for examining the foraging ecology of large marine predators.

2020 ◽  
Author(s):  
Annalee M. Tutterow ◽  
Andrew S. Hoffman ◽  
John L. Buffington ◽  
Zachary T. Truelock ◽  
William E. Peterman

AbstractFood acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, which predators can achieve by targeting spaces with high prey availability. However, it is debated whether prey availability drives fine-scale habitat selection for predators.We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey.We evaluated the spatial concordance of radio-telemetered timber rattlesnake foraging locations and passive infrared game camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) in a mixed-use forest in southeastern Ohio from 2016–2019. We replicated a characteristic timber rattlesnake ambush position by focusing cameras over logs and modeled small mammal encounters across the landscape in relation to remotely-sensed forest and landscape structural features. To determine whether snakes selectively forage in areas with higher prey availability, we projected the estimated prey spatial relationships across the landscape and modeled their overlap of occurrence with observed timber rattlesnake foraging locations.We broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared to Peromyscus spp. We also combined predicted species encounter rates to encompass a body size gradient in potential prey. The spatial distribution of cumulative small mammal encounters (i.e. overall prey availability), rather than the distribution of any one species, was highly predictive of snake foraging.Timber rattlesnakes appear to select foraging locations where the probability of encountering prey is greatest. Our study provides evidence for fine-scale optimal foraging in a low-energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.


2019 ◽  
Vol 6 (10) ◽  
pp. 191104 ◽  
Author(s):  
Madison M. Kosma ◽  
Alexander J. Werth ◽  
Andrew R. Szabo ◽  
Janice M. Straley

Humpback whales ( Megaptera novaeangliae ) have exceptionally long pectorals (i.e. flippers) that aid in shallow water navigation, rapid acceleration and increased manoeuvrability. The use of pectorals to herd or manipulate prey has been hypothesized since the 1930s. We combined new technology and a unique viewing platform to document the additional use of pectorals to aggregate prey during foraging events. Here, we provide a description of ‘pectoral herding’ and explore the conditions that may promote this innovative foraging behaviour. Specifically, we analysed aerial videos and photographic sequences to assess the function of pectorals during feeding events near salmon hatchery release sites in Southeast Alaska (2016–2018). We observed the use of solo bubble-nets to initially corral prey, followed by calculated movements to establish a secondary boundary with the pectorals—further condensing prey and increasing foraging efficiency. We found three ways in which humpback whales use pectorals to herd prey: (i) create a physical barrier to prevent evasion, (ii) cause water motion to guide prey towards the mouth, and (iii) position the ventral side to reflect light and alter prey movement. Our findings suggest that behavioural plasticity may aid foraging in changing environments and shifts in prey availability. Further study would clarify if ‘pectoral herding’ is used as a principal foraging tool by the broader humpback whale population and the conditions that promote its use.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254269
Author(s):  
Emmanuelle Barreau ◽  
Akiko Kato ◽  
Andre Chiaradia ◽  
Yan Ropert-Coudert

As extreme weather is expected to become more frequent with global climate change, it is crucial to evaluate the capacity of species to respond to short-term and unpredictable events. Here, we examined the effect of a strong storm event during the chick-rearing stage of little penguins (Eudyptula minor) from a mega colony in southern Australia. We investigated how a 3-day storm affected the foraging behaviour of little penguins by comparing their foraging activities and body mass change before, during and after the storm event. As strong winds deepened the mixed layer in the birds’ foraging zone during the storm, penguins increased their foraging trip duration, had a lower prey encounter rate and a lower body mass gain. The adverse effects on the foraging efficiency of little penguins continued several days after the storm ceased; even though the water column stratification had returned as before the storm, suggesting a prolonged effect of the storm event on the prey availability. Thus, short-term stochastic events can have an extended impact on the foraging efficiency of penguins. When occurring at a crucial stage of breeding, this may affect breeding success.


Quaternary ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 7
Author(s):  
Miki Ben-Dor ◽  
Ran Barkai

We hypothesize that megafauna extinctions throughout the Pleistocene, that led to a progressive decline in large prey availability, were a primary selecting agent in key evolutionary and cultural changes in human prehistory. The Pleistocene human past is characterized by a series of transformations that include the evolution of new physiological traits and the adoption, assimilation, and replacement of cultural and behavioral patterns. Some changes, such as brain expansion, use of fire, developments in stone-tool technologies, or the scale of resource intensification, were uncharacteristically progressive. We previously hypothesized that humans specialized in acquiring large prey because of their higher foraging efficiency, high biomass density, higher fat content, and the use of less complex tools for their acquisition. Here, we argue that the need to mitigate the additional energetic cost of acquiring progressively smaller prey may have been an ecological selecting agent in fundamental adaptive modes demonstrated in the Paleolithic archaeological record. We describe several potential associations between prey size decline and specific evolutionary and cultural changes that might have been driven by the need to adapt to increased energetic demands while hunting and processing smaller and smaller game.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph M. Eisaguirre ◽  
Perry J. Williams ◽  
Xinyi Lu ◽  
Michelle L. Kissling ◽  
William S. Beatty ◽  
...  

Abstract Background Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now exceeds 25,000. Methods Periodic aerial surveys in the region provide a time series of spatially-explicit data to investigate factors influencing this successful and ongoing recovery. We integrated an ecological diffusion model that accounted for spatially-variable motility and density-dependent population growth, as well as multiple population epicenters, into a Bayesian hierarchical framework to help understand the factors influencing the success of this recovery. Results Our results indicated that sea otters exhibited higher residence time as well as greater equilibrium abundance in Glacier Bay, a protected area, and in areas where there is limited or no commercial fishing. Asymptotic spread rates suggested sea otters colonized Southeast Alaska at rates of 1–8 km/yr with lower rates occurring in areas correlated with higher residence time, which primarily included areas near shore and closed to commercial fishing. Further, we found that the intrinsic growth rate of sea otters may be higher than previous estimates suggested. Conclusions This study shows how predator recolonization can occur from multiple population epicenters. Additionally, our results suggest spatial heterogeneity in the physical environment as well as human activity and management can influence recolonization processes, both in terms of movement (or motility) and density dependence.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 356
Author(s):  
Andrés Ordiz ◽  
Cyril Milleret ◽  
Antonio Uzal ◽  
Barbara Zimmermann ◽  
Petter Wabakken ◽  
...  

Several large carnivore populations are recovering former ranges, and it is important to understand interspecific interactions between overlapping species. In Scandinavia, recent research has reported that brown bear presence influences gray wolf habitat selection and kill rates. Here, we characterized the temporal use of a common prey resource by sympatric wolves and bears and described individual and seasonal variation in their direct and/or indirect interactions. Most bear–wolf interactions were indirect, via bear scavenging of wolf kills. Bears used >50% of wolf kills, whereas we did not record any wolf visit at bear kills. Adult and subadult bears visited wolf kills, but female bears with cubs of the year, the most vulnerable age class to conspecifics and other predators, did not. Wolf and bear kill rates peaked in early summer, when both targeted neonate moose calves, which coincided with a reduction in bear scavenging rate. Some bears were highly predatory and some did not kill any calf. Individual and age-class variation (in bear predation and scavenging patterns) and seasonality (in bear scavenging patterns and main prey availability of both wolves and bears) could mediate coexistence of these apex predators. Similar processes likely occur in other ecosystems with varying carnivore assemblages.


2014 ◽  
Vol 83 (4) ◽  
pp. 217-225 ◽  
Author(s):  
Eva Johanna Rode-Margono ◽  
K. Anne-Isola Nekaris

Predation pressure, food availability, and activity may be affected by level of moonlight and climatic conditions. While many nocturnal mammals reduce activity at high lunar illumination to avoid predators (lunarphobia), most visually-oriented nocturnal primates and birds increase activity in bright nights (lunarphilia) to improve foraging efficiency. Similarly, weather conditions may influence activity level and foraging ability. We examined the response of Javan slow lorises (Nycticebus javanicus Geoffroy, 1812) to moonlight and temperature. We radio-tracked 12 animals in West Java, Indonesia, over 1.5 years, resulting in over 600 hours direct observations. We collected behavioural and environmental data including lunar illumination, number of human observers, and climatic factors, and 185 camera trap nights on potential predators. Nycticebus javanicus reduced active behaviours in bright nights. Although this might be interpreted as a predator avoidance strategy, animals remained active when more observers were present. We did not find the same effect of lunar illumination on two potential predators. We detected an interactive effect of minimum temperature and moonlight, e.g. in bright nights slow lorises only reduce activity when it is cold. Slow lorises also were more active in higher humidity and when it was cloudy, whereas potential predators were equally active across conditions. As slow lorises are well-adapted to avoid/defend predators by crypsis, mimicry and the possession of venom, we argue that lunarphobia may be due to prey availability. In bright nights that are cold, the combined effects of high luminosity and low temperature favour reduced activity and even torpor. We conclude that Javan slow lorises are lunarphobic – just as the majority of mammals.


2015 ◽  
Vol 2 (4) ◽  
pp. 140291 ◽  
Author(s):  
Nicole D. Kowalczyk ◽  
André Chiaradia ◽  
Tiana J. Preston ◽  
Richard D. Reina

Unlike migratory seabirds with wide foraging ranges, resident seabirds forage in a relatively small range year-round and are thus particularly vulnerable to local shifts in prey availability. In order to manage their populations effectively, it is necessary to identify their key prey across and within years. Here, stomach content and stable isotope analyses were used to reconstruct the diet and isotopic niche of the little penguin ( Eudyptula minor ). Across years, the diet of penguins was dominated by anchovy ( Engraulis australis ). Within years, during winter, penguins were consistently enriched in δ 15 N and δ 13 C levels relative to pre-moult penguins. This was probably due to their increased reliance on juvenile anchovies, which dominate prey biomass in winter months. Following winter and during breeding, the δ 13 C values of penguins declined. We suggest this subtle shift was in response to the increased consumption of prey that enter the bay from offshore regions to spawn. Our findings highlight that penguins have access to both juvenile fish communities and spawning migrants across the year, enabling these seabirds to remain in close proximity to their colony. However, annual fluctuations in penguin isotopic niche suggest that the recruitment success and abundance of fish communities fluctuate dramatically between years. As such, the continued monitoring of penguin diet will be central to their ongoing management.


2018 ◽  
Vol 99 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Aylin Akkaya Baş ◽  
Bayram Öztürk ◽  
Ayaka Amaha Öztürk

AbstractThe Istanbul Strait is an important cetacean habitat that is intensely used by humans. Yet little is known about their spatial-temporal distribution. To understand the encounter rates and residency patterns of bottlenose dolphins, photo-identification data were collected between 2011 and 2016 in the Istanbul Strait. The study showed that bottlenose dolphins are a regular, year-round component of the strait. The encounter rate was estimated to be four groups (22 individuals) per 10 km. The adjacent waters of Marmara Sea and Black Sea, that host relatively less marine traffic, had the highest number of encounters in the area. Conversely, the middle sections had the lowest number of encounters but the highest marine vessel density. Further, the encounter rates dropped to zero in the fishing zones, where the number of purse seines reached up to 100 per day. Additionally, dolphins showed varying degrees of residency patterns, with multi-year re-sightings. Maximum re-sighting distance was up to 35 km, which is more than the total length of the strait. This movement pattern should be investigated as it might reveal possible migration between local populations. This study finds that the Istanbul Strait serves as a critical habitat for the regional bottlenose dolphin populations and they are likely to be a part of a resident local population with a home range extending the length of the strait. Dedicated surveys with inter-regional collaborations are needed to evaluate the home range and population status of this endangered species for their effective conservation in one of the busiest waterways of the world.


Sign in / Sign up

Export Citation Format

Share Document