Correlation of depth and heart rate in harbour seal pups

2004 ◽  
Vol 82 (7) ◽  
pp. 1147-1156 ◽  
Author(s):  
J L Hicks ◽  
R J O'Hara Hines ◽  
J F Schreer ◽  
M O Hammill

Harbour seal (Phoca vitulina L., 1758) pups are aquatically active from birth and have been shown to develop increased cardiac control throughout the nursing period. In an attempt to quantify and compare these developmental changes, data previously collected on pups in the St. Lawrence River estuary, Quebec, Canada, were analyzed. Time–depth recorders and heart-rate recorders were employed on eight pups to obtain depth and heart-rate measurements simultaneously. Analyses involved partitioning the data into intervals of surface–dive–surface. These intervals were then allocated into nine consecutive segments: presurface, predive surface, descent, prebottom, bottom, postbottom, ascent, postdive surface, and postsurface. Mean heart rate for each segment was then correlated with the mean depth per segment and overall dive duration. With increasing dive depth, a decrease in heart-rate variability with age was observed. There was no apparent relationship between mean heart rate during the dive and overall dive duration. The proportion of time spent in the lower heart-rate mode was observed to increase with age during most phases of a dive. Relative changes in mean heart rate between consecutive dive segments indicated an initial decrease in mean heart rate prior to submersion and an increasing trend before surfacing. These findings indicate that harbour seal pups develop increased cardiac control prior to weaning and that anticipatory cardiac responses to diving and surfacing (bradycardia and tachycardia, respectively) may be evident.

1997 ◽  
Vol 200 (4) ◽  
pp. 661-675 ◽  
Author(s):  
R M Bevan ◽  
I L Boyd ◽  
P J Butler ◽  
K Reid ◽  
A J Woakes ◽  
...  

The South Georgian shag (Phalacrocorax georgianus) shows a remarkable diving ability comparable to that of penguins, yet nothing is known of the physiology of these birds. In this study, heart rates and abdominal temperatures were recorded continuously in four free-ranging South Georgian shags using an implanted data-logger. A time­depth recorder was also attached to the back of the implanted birds to record their diving behaviour. The diving behaviour of the birds was essentially similar to that reported in other studies, with maximum dive durations for individual birds ranging between 140 and 287 s, and maximum depths between 35 and 101 m. The birds, while at the nest, had a heart rate of 104.0±13.1 beats min-1 (mean ± s.e.m.) and an abdominal temperature of 39.1±0.2 °C. During flights of 221±29 s, heart rate and abdominal temperature rose to 309.5±18.0 beats min-1 and 40.1±0.3 °C, respectively. The mean heart rate during diving, at 103.7±13.7 beats min-1, was not significantly different from the resting values, but the minimum heart rate during a dive was significantly lower at 64.8±5.8 beats min-1. The minimum heart rate during a dive was negatively correlated with both dive duration and dive depth. Abdominal temperature fell progressively during a diving bout, with a mean temperature at the end of a bout of 35.1±1.7 °C. The minimum heart rate during diving is at a sub-resting level, which suggests that the South Georgian shag responds to submersion with the 'classic' dive response of bradycardia and the associated peripheral vasoconstriction and utilisation of anaerobic metabolism. However, the reduction in abdominal temperature may reflect a reduction in the overall metabolic rate of the animal such that the bird can remain aerobic while submerged.


1999 ◽  
Vol 202 (9) ◽  
pp. 1115-1125 ◽  
Author(s):  
A.L. Southwood ◽  
R.D. Andrews ◽  
M.E. Lutcavage ◽  
F.V. Paladino ◽  
N.H. West ◽  
...  

Heart rates and diving behavior of leatherback sea turtles (Dermochelys coriacea) were monitored at sea during the internesting interval. Instruments that recorded the electrocardiogram and the depth and duration of dives were deployed on six female leatherback turtles as they laid eggs at Playa Grande, Costa Rica. Turtles dived continually for the majority of the internesting interval and spent 57–68 % of the time at sea submerged. Mean dive depth was 19+/−1 m (mean +/− s.d.) and the mean dive duration was 7.4+/−0.6 min. Heart rate declined immediately upon submergence and continued to fall during descent. All turtles showed an increase in heart rate before surfacing. The mean heart rate during dives of 17.4+/−0.9 beats min-1 (mean +/− s.d.) was significantly lower than the mean heart rate at the surface of 24.9+/−1.3 beats min-1 (P<0.05). Instantaneous heart rates as low as 1.05 beats min-1 were recorded during a 34 min dive. The mean heart rate over the entire dive cycle (dive + succeeding surface interval; 19.4+/−1.3 beats min-1) was more similar to the heart rate during diving than to the heart rate at the surface. Although dive and surface heart rates were significantly different from each other, heart rates during diving were 70 % of heart rates at the surface, showing that leatherback turtles do not experience a dramatic bradycardia during routine diving.


1997 ◽  
Vol 200 (15) ◽  
pp. 2083-2095 ◽  
Author(s):  
R D Andrews ◽  
D R Jones ◽  
J D Williams ◽  
P H Thorson ◽  
G W Oliver ◽  
...  

Heart rates of northern elephant seals diving at sea and during apnoea on land were monitored to test whether a cardiac response to submergence is an important factor in their ability to make repetitive, long-duration dives. Seven juvenile northern elephant seals were captured at Año Nuevo, CA, instrumented and translocated to release sites around Monterey Bay. Heart rate and dive depth were recorded using custom-designed data loggers and analogue tape monitors during the seals' return to Año Nuevo. Heart rates during apnoea and eupnoea were recorded from four of the seals after they hauled out on the beach. Diving patterns were very similar to those of naturally migrating juveniles. The heart rate response to apnoea at sea and on land was a prompt bradycardia, but only at sea was there an anticipatory tachycardia before breathing commenced. Heart rate at sea declined by 64% from the surface rate of 107 +/- 3 beats min-1 (mean +/- S.D.), while heart rate on land declined by 31% from the eupnoeic rate of 65 +/- 8 beats min-1. Diving heart rate was inversely related to dive duration in a non-linear fashion best described by a continuous, curvilinear model, while heart rate during apnoea on land was independent of the duration of apnoea. Occasionally, instantaneous heart rate fell as low as 3 beats min-1 during diving. Although bradycardia occurs in response to apnoea both at sea and on land, only at sea is heart rate apparently regulated to minimise eupnoeic time and to ration oxygen stores to ensure adequate supplies for the heart and brain not only as the dive progresses normally but also when a dive is abnormally extended.


1987 ◽  
Vol 127 (1) ◽  
pp. 333-348 ◽  
Author(s):  
R. A. FURILLA ◽  
DAVID R. JONES

Dive heart rate was plotted against pre-dive heart rate in forced and voluntary dives and dabbles by restrained and free ducks. The relationship between pre-dive heart rate and the cardiac interval occurring just before or coincident with submersion (first cardiac interval) and the heart rate after 2–5 s submergence (stabilized heart rate) was emphasized. Stabilized heart rate in forced dives by restrained ducks at rest and at the end of a bout of exercise, and heart rate in voluntary dives and dabbles were linearly related on a plot of dive heart rate against the logarithm of predive heart rate. Even the heart rate occurring 2–5 s after ducks were ‘trapped’ under water, compared with the rate immediately before ‘trapping’, fitted on this line. The line was described by the equation y = - 451 + 2461ogx where y is dive (or trapped) and × is pre-dive (or pre-trap) heart rate (r2 = 0.98). The relationship was unaltered by β-blockade with propranolol. Furthermore, nasal blockade with Xylocaine, O2 breathing before submersion, and arterial baroreceptor denervation had no marked effect on the relationship in voluntary and trapped dives. Implantation of stimulating electrodes bilaterally on the cut distal ends of vagal and cardiac sympathetic nerves suggested that in all these dives there is a similar increase in the level of efferent vagal activity during submersion. However, the first cardiac interval in voluntary dives represents a much lower heart rate and therefore higher level of vagal activity. The present data suggest that there is considerable psychogenic modulation of cardiac responses in voluntary diving and only in forced dives, by restrained animals, is cardiac control largely reflexogenic.


2004 ◽  
Vol 82 (7) ◽  
pp. 1070-1081 ◽  
Author(s):  
Véronique Lesage ◽  
Mike O Hammill ◽  
Kit M Kovacs

Previous studies of harbour seal (Phoca vitulina L., 1758) movements indicate that this species is relatively sedentary throughout the year. However, few investigations have examined their movements and seasonal distribution patterns in ice-covered areas. This study used spatial analysis of ice data and movement data from harbour seals collected via satellite (n = 7) and VHF radiotelemetry (n = 15) to explore this species' spatial use patterns in a seasonally ice-covered region, the St. Lawrence River estuary, Canada. When solid ice formed within the bays of the estuary, four of the seven satellite-tagged animals (all adult males) left their summer haul-out areas, migrating 266 ± 202 km (range 65–520 km) to over-wintering sites. The seals exhibited preference for areas of light to intermediate ice conditions during the winter months; at least six of the seven seals occupied areas with lighter ice conditions than those that prevailed generally in the study area. Evidence of high abundance of potential prey for harbour seals in the estuary during winter suggests that reduced availability of adequate food resources is not the primary factor which influences the movement and distribution patterns of harbour seals. Movement patterns observed during the ice-free period concur with previously reported harbour seal behaviour; the seals remained near the coast (<6.1–11.0 km from shore) in shallow water areas (<50 m deep in 100% VHF and 90% SLTDRs (satellite-linked time-depth recorders)) and travelled only short distances (15–45 km) from capture sites. None of the VHF- or satellite-tagged seals crossed the 350 m deep Laurentian channel, which suggests that this deep body of water might represent a physical barrier to this coastal population.


1993 ◽  
Vol 174 (1) ◽  
pp. 139-154 ◽  
Author(s):  
D Thompson ◽  
M A Fedak

Heart rate, swimming speed and diving depth data were collected from free-ranging grey seals, Halichoerus grypus, as they foraged and travelled in the sea around the Hebrides Islands off western Scotland. Information was collected on a tracking yacht using a combination of sonic and radio telemetry. Diving heart rate declined as a function of dive duration. In long dives, grey seals employed extreme bradycardia, with heart rates falling to 4 beats min-1 for extended periods, despite the animal being free to breath at will. This extreme dive response is part of the normal foraging behaviour. Seals spent 89% of the time submerged during bouts of long dives; swimming was restricted to ascent and descent. Dive durations exceeded estimated aerobic dive limit, even assuming resting metabolic rates. These results indicate that behavioural, and possibly cellular, energy-sparing mechanisms play an important role in diving behaviour of grey seals. This has implications not only for studies of mammalian energetics but also for our understanding of the foraging tactics and prey selection of marine mammals. If some seals are using energy-sparing mechanisms to reduce metabolic costs while at depth, they may be forced to wait for and ambush prey rather than to search for and chase it.


1999 ◽  
Vol 276 (2) ◽  
pp. R500-R504 ◽  
Author(s):  
Ping Li ◽  
Steven H. Sur ◽  
Ralph E. Mistlberger ◽  
Mariana Morris

The circadian pattern of mean arterial pressure (MAP) and heart rate (HR) was measured in C57BL mice with carotid arterial catheters. Cardiovascular parameters were recorded continuously with a computerized monitoring system at a sampling rate of 100 Hz. The tethered animals were healthy, showing stabilized drinking and eating patterns within 2 days of surgery and little loss of body weight. Analysis of the 24-h pattern of MAP and HR was conducted using data from 3–6 consecutive days of recording. A daily rhythm of MAP was evident in all mice, with group mean dark and light values of 101.4 ± 7.3 and 93.1 ± 2.9 mmHg, respectively. The group mean waveform was bimodal, with peak values evident early and late in the dark period, and a trough during the middle of the light period. The phase of maximum and minimum values showed low within-group variance. Mean heart rate was greater at night than during the day (561.9 ± 22.7 vs. 530.3 ± 22.3 beats/min). Peak values generally occurred at dark onset, and minimum values during the middle of both the dark and the light periods. We conclude that it is possible to perform measurements of circadian cardiovascular parameters in the mouse, providing new avenues for the investigation of genetic models.


2017 ◽  
Vol 123 (2) ◽  
pp. 344-351 ◽  
Author(s):  
Luiz Eduardo Virgilio Silva ◽  
Renata Maria Lataro ◽  
Jaci Airton Castania ◽  
Carlos Alberto Aguiar Silva ◽  
Helio Cesar Salgado ◽  
...  

Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


1998 ◽  
Vol 66 (2) ◽  
pp. 383-387 ◽  
Author(s):  
M. Khalid ◽  
W. Haresign ◽  
D. G. Bradley

AbstractThis study consisted of two experiments. In experiment 1, stress responses of sheep which were restrained either in a laparoscopy cradle or a roll-over cradle were compared. The results of this experiment indicated that restraint in roll-over cradle is less (P < 0·05) stressful than that in a laparoscopy cradle when assessed in terms of the elevation and duration of both the mean heart rate and plasma cortisol responses. Experiment 2 compared the stress responses of sheep subjected to restraint in a laparoscopy cradle, restraint in a laparoscopy cradle with intrauterine artificial insemination (AI) by laparoscopy, minimal restraint with cervical AI or restraint in a roll-over cradle plus foot-trimming. All treatments resulted in significant elevations in both heart rate and plasma cortisol concentrations (F < 0·001). The peak heart rate was significantly (P < 0·05) higher in ewes subjected to cervical AI than in those subjected to intrauterine insemination, with other treatments intermediate. The peak cortisol response did not differ among different treatments. The duration over which both the mean heart rate and -plasma cortisol concentrations remained significantly elevated above pre-treatment concentrations did not differ among treatment groups. The results of this study suggest that while restraint using a laparoscopy cradle is more stressful than that using a rollover cradle, the stress inflicted by intrauterine insemination by laparoscopy itself is no greater than that due to restraint using the laparoscopy cradle alone, cervical AI or the management practice offoot-trimming using a rollover cradle.


Sign in / Sign up

Export Citation Format

Share Document