Larval development in the American lobster: changes in metabolic activity and the O:N ratio

1979 ◽  
Vol 57 (10) ◽  
pp. 1845-1848 ◽  
Author(s):  
Judith M. Capuzzo ◽  
Bruce A. Lancaster

The rates of oxygen consumption under conditions of feeding and starvation and the rates of ammonia excretion after feeding increased with each larval stage of the American lobster (Homarus americanus Milne Edwards) and decreased with the first postlarval stage. There was no significant difference in the O:N ratio of the first three larval stages (~26.5), but a significant reduction (P < 0.01) was measured among stages IV and V. It appears that, whereas protein catabolism may be the principal source of energy, some of the energy yield during larval development is from lipid or carbohydrate catabolism; the use of the latter substrates is diminished in the last larval and first postlarval stages.


1998 ◽  
Vol 201 (17) ◽  
pp. 2465-2479 ◽  
Author(s):  
S Harzsch ◽  
J Miller ◽  
J Benton ◽  
RR Dawirs ◽  
B Beltz

The mode of embryonic and larval development and the ethology of metamorphosis in the spider crab and the American lobster are very different, and we took advantage of this to compare neuronal development in the two species. The goals of this study were to discover whether the differences in the maturation of the neuromuscular system in the pereopods and the metamorphic changes of motor behavior between the two species are reflected at the level of the developing nervous system ('neurometamorphosis'). Furthermore, we wanted to broaden our understanding of the mechanisms that govern neuronal development in arthropods. Proliferation of neuronal stem cells in thoracic neuromeres 4-8 of the lobster Homarus americanus and the crab Hyas araneus was monitored over the course of embryonic and larval development using the in vivo incorporation of bromodeoxyuridine (BrdU). Neuropil structure was visualized using an antibody against Drosophila synapsin. While proliferation of neuronal precursors has ceased when embryogenesis is 80 % complete (E80%) in the lobster thoracic neuromeres, proliferation of neuroblasts in the crab persists throughout embryonic development and into larval life. The divergent temporal patterns of neurogenesis in the two crustacean species can be correlated with differences in larval life style and in the degree of maturation of the thoracic legs during metamorphic development. Several unusual aspects of neurogenesis reported here distinguish these crustaceans from other arthropods. Lobsters apparently lack a postembryonic period of proliferation in the thoracic neuromeres despite the metamorphic remodeling that takes place in the larval stages. In contrast, an increase in mitotic activity towards the end of embryonic development is found in crabs, and neuroblast proliferation persists throughout the process of hatching into the larval stages. In both E20% lobster embryos and mid-embryonic crabs, expression of engrailed was found in a corresponding set of neurons and putative glial cells at the posterior neuromere border, suggesting that these cells have acquired similar specific identities and might, therefore, be homologous. None of the BrdU-labeled neuroblasts (typically 6-8 per hemineuromere over a long period of embryogenesis) was positive for engrailed at this and subsequent stages. Our findings are discussed in relation to the spatial and temporal patterns of neurogenesis in insects.



Aquaculture ◽  
1974 ◽  
Vol 3 (3) ◽  
pp. 311-314 ◽  
Author(s):  
Steven A. Serfling ◽  
Jon C. Van Olst ◽  
Richard F. Ford


1977 ◽  
Vol 1977 (1) ◽  
pp. 569-573
Author(s):  
Joseph M. Forns

ABSTRACT The effects of API reference South Louisiana crude oil upon four larval stages of American lobster (Homarus americanus) were determined in a flow-through system. Tests were conducted with naturally-hatched animals in individual test chambers as well as in mass culture systems in an operating state lobster hatchery. Experimental flow-through crude oil exposure concentrations were 0.1, and 1.0 ppm, administered as a strongly-agitated emulsion-like mix to ambient temperature seawater ranging from 15°-20°C. Oil exposure residence times ranged from 0.8-5.6 minutes depending on the test. Exposed animals were monitored six times daily for feeding behavioral characteristics, mobility, molting success, growth and development times to reach the fourth larval stage. Pigmentation analysis was performed on individual larvae by photomicroscopy, and hydrocarbon analyses were also conducted thereon. Post-larval development through the eighth stage was investigated. Statistical comparisons were made among different control animals and between control and oil-exposed larvae.



1976 ◽  
Vol 33 (7) ◽  
pp. 1604-1614 ◽  
Author(s):  
Peter G. Wells ◽  
John B. Sprague

Four-day LC50s for Venezuelan Tia Juana crude oil were 0.86 mg/liter for first-stage larvae of the American lobster (Homarus americanus) and 4.9 mg/liter for third- and fourth-stage larvae. The 30-day LC50 was 0.14 mg/liter for larvae starting the test in their first stage. The threshold for retardation of larval development was about the same as the 30-day LC50. Decreased food consumption was demonstrated at 0.19 mg/liter. More "intermediate" larvae developed in oil exposures but no threshold was estimated. The ratio of "safe" to acutely lethal concentrations was about 0.03.Oil concentrations decreased during exposures; stated values could be multiplied by 0.59 to arrive at conventional average exposures. Stirring and ultrasonic vibration for 30 min dispersed averages of 7.4 and 18% of added oil. This and other techniques apparently dispersed similar components since toxicities were the same when based on measured concentrations. Aged dispersions were also equally toxic on a measured basis. Particles larger than 1.2 μm made up 84–96% of the dispersed oil and were about one-third as toxic as smaller particles and dissolved oil. For the reference toxicant DSS, the 4-day LC50 was 0.72 mg/liter for first-stage larvae indicating that lobster larvae are sensitive. Post-larval lobsters dug significantly more burrows when the substrate contained oil but did not avoid oiled substrate nor was growth or survival affected for substrates containing up to 1740 mg/liter of oil.



2016 ◽  
Vol 74 (4) ◽  
pp. 1210-1219 ◽  
Author(s):  
Jesica D. Waller ◽  
Richard A. Wahle ◽  
Halley McVeigh ◽  
David M. Fields

Few studies have evaluated the joint effects of elevated temperature and pCO2 on marine organisms. In this study we investigated the interactive effects of Intergovernmental Panel on Climate Change predicted temperature and pCO2 for the end of the 21st century on key aspects of larval development of the American lobster, Homarus americanus, an otherwise well-studied, iconic, and commercially prominent species in the northeastern United States and Atlantic Canada. Our experiments showed that larvae (stages I–III) and postlarvae (stage IV) reared in the high temperature treatments (19 °C) experienced significantly lower survival, developed twice as fast, and had significantly higher oxygen consumption rates, than those in ambient treatments (16 °C). Larvae from the ambient temperature/high pCO2 (750 ppm) treatment had significantly longer carapace lengths, greater dry masses in stages I–III and higher C: N ratios in stage IV than larvae from all other treatments. Stage IVs raised in the high pCO2 treatment at 19 °C had significantly higher feeding rates and swimming speeds than stage IVs from the other three treatments. Together these results suggest that projected end-century warming will have greater adverse effects than increased pCO2 on larval survival, and changing pCO2 may have a complex effect on larval metabolism and behaviour. Understanding how the most vulnerable life stages of the lobster life cycle respond to climate change is essential in connecting the northward geographic shifts projected by habitat quality models, and the underlying physiological and genetic mechanisms that drive their ecology.



1986 ◽  
Vol 43 (11) ◽  
pp. 2177-2183 ◽  
Author(s):  
G. P. Ennis

The swimming capacity of American lobster, Homarus americanus, larvae in flowing water was observed in a screened-off portion of a flow tank. At a flow rate of 2 cm∙s−1, stage I–III larvae were swimming for 46–74% of the observations during the first 5 min but this ranged from 0 to 28% toward the end of a 30-min period. At higher flow rates, however, very few of these larvae were able to continue swimming longer than 5 min. Newly molted stage IV larvae displayed substantially improved swimming ability compared with earlier stages. At 2 cm∙s−1, these larvae were swimming for 40–48% of the observations over the 30-min period, although at higher flow rates their capacity to continue swimming was also limited and few were observed swimming longer than 10 min. Older stage IV larvae were more capable swimmers than newly molted stage IV larvae and displayed a capacity to continue swimming over the 30-min observation period at flow rates up to 9 cm∙s−1. In flowing water, the frequency of orientation in the upstream direction for larvae that were swimming was higher than for control larvae. For stage IV larvae especially, this frequency was higher at the higher flow rates. The observations demonstrate the presence of a rheotactic response in all larval stages of the American lobster. The response is relatively weak in stages I–III but strong in stage IV.



1985 ◽  
Vol 42 (2) ◽  
pp. 351-356 ◽  
Author(s):  
D. E. Aiken ◽  
S. L. Waddy ◽  
L S. Uhazy

Pseudocarcinonemertes homari can reproduce on and destroy the egg mass of both the American (Homarus americanus) and the European lobster (H. gammarus) but does not appear to be a problem for brachyuran species. The eggs of P. homari are subspherical, average 251 × 260 μm, and are contained in individual compartments in a membranous brood sac that is attached to the lobster abdomen or egg mass. An average of 39 eggs occur in a brood sac. Newly hatched larvae are ciliated, lack anterior and posterior tufts, cirri or flagella, and are retained in the brood sac. Larval development is direct, and there is no free-swimming stage. After the larvae break out of the brood sac they join the adults and juveniles on the lobster egg mass. Many lobsters gradually remove infested eggs, but on those that do not, the nemertean population can increase to more than 14 000 individuals. After the lobster eggs are destroyed, the nemerteans disperse. Some form mucoid aggregations at protected sites on the exoskeleton; others move to the branchial chamber and gills or transfer to other lobsters. Reproduction occurs almost exclusively on the lobster egg mass, but P. homari appears capable of reproducing on lobster gills if denied access to lobster eggs for extended periods.



1984 ◽  
Vol 41 (9) ◽  
pp. 1334-1340 ◽  
Author(s):  
Jennifer G. Smith Derby ◽  
Judith M. Capuzzo

The lethal and sublethal effects of five used, whole drilling fluids on the larval stages of the American lobster (Homarus americanus) were assessed in laboratory experiments using a continuous-flow bioassay. Although the five tested drilling fluids varied markedly in their toxicity, some were highly toxic, with LC50 values as low as 74 mg/L. Sublethal exposures to drilling fluids at concentrations as low as 10–50 mg/L resulted in reduced respiration rates, reduced O:N ratios, and increased protein:lipid ratios, demonstrating a change in energetics of the larval lobsters. Growth and development of the larvae were seriously impaired by exposure to three of the five drilling fluids at concentrations of 50 and 100 mg/L. The feeding rates were also significantly reduced after a 24-h exposure to 50 mg/L drilling fluid. Exposure of larvae to barite (a major component of drilling fluids) and to a field-collected, fine-grained sediment did not result in deleterious effects. We suggest that the chemical components and not the physical properties of the drilling fluids are primarily responsible for detrimental effects. From results of the chemical analyses of the tested drilling fluids, we consider that the adverse effects of these drilling fluids cannot be attributed to any one group of chemicals. For example, diesel oil, a known toxicant, was present in the more toxic drilling fluids; however, there was no direct correlation between the toxicity of a drilling fluid and diesel oil concentration. Phenolic compounds, various metals, and other components probably also contributed to the toxicity of these drilling fluids.



2016 ◽  
Author(s):  
Eric J Pedersen ◽  
Ryan R.E. Stanley ◽  
Paul V.R. Snelgrove ◽  
Frederic Guichard

Predicting dispersal paths of marine larvae with long pelagic durations, such as American lobster (Homarus americanus), requires understanding the cues to which larvae respond, and how that response reflects changes in larval behaviour. If larvae respond to conspecific presence by varying their movement, this behaviour can bias laboratory estimates of environmental responses. We tested whether larvae actively decreased their local intraspecific density by measuring how the vertical distribution of larvae changed under high versus low concentrations of conspecifics. We observed weak increases in vertical dispersion at higher concentrations in both newly-hatched larvae and in post-larvae, but not in intermediate larval stages. Further, we found that larvae from different mothers consistently differed in vertical distribution, which may indicate maternal effects on dispersal behavior. We also tested for differences in horizontal swimming behaviour in high and low concentrations, by fitting a novel random walk model that allowed us to model both larval interactions and persistent turning behaviours. We showed substantial reduction in diffusive behaviour under high concentration conditions resulting from more frequent turns by each larva, but no evidence for consistent avoidance of conspecifics. Our study is the first to demonstrate concentration-dependent behaviours in lobster larvae.



Sign in / Sign up

Export Citation Format

Share Document