reference toxicant
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1132
Author(s):  
Andrea Castaño-Sánchez ◽  
Florian Malard ◽  
Gabriela Kalčíková ◽  
Ana Sofia P. S. Reboleira

Current standardized laboratory test protocols use model species that have limitations to accurately assess native species responses to stressors. We developed and tested a novel acute in situ protocol for testing field-collected organisms. We used Asellus aquaticus and NaCl as a reference toxicant to test for the effects of location (laboratory vs. in situ), medium (synthetic vs. field water), substrate (presence vs. absence), and protocol replicability. We further tested the protocol using groundwater-adapted isopods: Proasellus assaforensis for the effect of location, P. cavaticus of medium and P.lusitanicus of substrate. Our results showed that A.aquaticus’ lethality obtained with the novel acute in situ protocol did not significantly differ from those from laboratory testing. However, laboratory tested P.assaforensis showed a higher sensitivity, suggesting that its acclimation to laboratory conditions might have pernicious effects. A. aquaticus and P. cavaticus showed a higher mortality using synthetic medium in situ and under laboratory conditions, which overestimated the stressor’s effect. Besides, substrate use had no significant effect. The novel acute in situ protocol allows the use of native species under realistic scenarios. It is particularly well adapted for assessing the risk of groundwater ecosystems but it can be applied to a wide range of ecosystems.



PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9615
Author(s):  
Florita Flores ◽  
Sarit Kaserzon ◽  
Gabriele Elisei ◽  
Gerard Ricardo ◽  
Andrew P. Negri

Tropical marine ecosystems, such as coral reefs, face several threats to their health and resilience, including poor water quality. Previous studies on the risks posed by pesticides have focused on five priority herbicides; however, as the number of pesticides applied in coastal agriculture increases, a suite of ‘alternative’ pesticides is being detected in tropical nearshore waters. To improve our understanding of the risks posed by alternative pesticides to tropical marine organisms, the effects of three insecticides (diazinon, fipronil, imidacloprid) and two fungicides (chlorothalonil, propiconazole) were tested on larval metamorphosis of the coral Acropora tenuis. A. tenuis larvae were affected by all five pesticides and the reference toxicant copper. The no effect concentration (NEC) and the 10% and 50% effect concentrations (EC10 and EC50, respectively) for larval metamorphosis were estimated from concentration-response curves after 48 h exposure. The NEC, EC10 and EC50 (in µg L−1), respectively, of each pesticide were as follows: chlorothalonil (2.4, 2.8, 6.0); fipronil (12.3, 13.9, 29.1); diazinon (38.0, 40.8, 54.7); imidacloprid (263, 273, 347); and propiconazole (269, 330, 1008). These toxicity thresholds are higher than reported concentrations in monitoring programs; however, these data will contribute to improving water quality guideline values, which inform the total risk assessments posed by complex contaminant mixtures to which these pesticides contribute.



2019 ◽  
Vol 49 (1) ◽  
pp. 203-210 ◽  
Author(s):  
A A Camp ◽  
M A Batres ◽  
W C Williams ◽  
D M Lehmann

Abstract Reliance on the honey bee as a surrogate organism for risk assessment performed on other bees is widely challenged due to differences in phenology, life history, and sensitivity to pesticides between bee species. Consequently, there is a need to develop validated methods for assessing toxicity in non-Apis bees including bumble bees. The usefulness of small-scale, queenless colonies, termed microcolonies, has not been fully investigated for hazard assessment. Using the insect growth regulator diflubenzuron as a reference toxicant, we monitored microcolony development from egg laying to drone emergence using the Eastern bumble bee Bombus impatiens (C.), a non-Apis species native to North America. Microcolonies were monitored following dietary exposure to diflubenzuron (nominal concentrations: 0.1, 1, 10, 100, and 1,000 µg/liter). Microcolony syrup and pollen consumption was significantly reduced by diflubenzuron exposure. Pupal cell production was also significantly decreased at the highest diflubenzuron concentration assessed. Ultimately, diflubenzuron inhibited drone production in a concentration-dependent manner and a 42-d 50% inhibitory concentration (IC50) was determined. None of the dietary concentrations of diflubenzuron tested affected adult worker survival, or average drone weight. These data strengthen the foundation for use of this methodology, and provide valuable information for B. impatiens; however, more work is required to better understand the utility of the bumble bee microcolony model for pesticide hazard assessment.



Author(s):  
Anais Guyon ◽  
Kirsty F. Smith ◽  
Maria P. Charry ◽  
Olivier Champeau ◽  
Louis A. Tremblay

The UV-filter benzophenone and the anti-inflammatory diclofenac are commonly detected in the environment. The aim of this study was to assess the multigenerational effects of chronic exposure to low concentrations of these chemicals on toxicity and DNA methylation levels in the copepod Gladioferens pectinatus. Acute toxicity tests were conducted to determine the sensitivity of G. pectinatus to the chemicals. All chemicals impacted breeding, hatching and egg viability. Diclofenac (1 mg.L-1) reduced the number of eggs per gravid female. Benzophenone (0.5 mg.L-1) decreased egg hatching success. Exposure to the reference toxicant copper (0.02 mg.L-1) led to unsuccessful hatching. Effects on DNA methylation was estimated by the percentage of 5- methylcytosine. The treatments resulted in strong differences in DNA methylation with increased methylation in the exposed animals. The two chemicals impacted both egg viability and the induction of differential DNA methylation, suggesting potential intra- and trans-generational evolutionary effects.





2016 ◽  
Author(s):  
Monica Nordberg ◽  
Douglas M. Templeton ◽  
Ole Andersen ◽  
John H. Duffus
Keyword(s):  


2015 ◽  
Vol 15 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Suratno Suratno ◽  
Rachma Puspitasari ◽  
Triyoni Purbonegoro ◽  
Dieni Mansur

In Copper (Cu) based antifouling (AF) paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd) on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM). IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC) to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC) to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.







2008 ◽  
Vol 27 (3) ◽  
pp. 720 ◽  
Author(s):  
Alison Anaka ◽  
Mark Wickstrom ◽  
Steven Douglas Siciliano


Sign in / Sign up

Export Citation Format

Share Document