scholarly journals Hard thermal loops in static background fields

2013 ◽  
Vol 73 (10) ◽  
Author(s):  
F. T. Brandt ◽  
J. Frenkel ◽  
J. B. Siqueira
2010 ◽  
Vol 24 (5) ◽  
pp. 494-499 ◽  
Author(s):  
Yigang Zhang ◽  
Yang Cao ◽  
Xuezhi Xiang

Author(s):  
Claudia Eckert ◽  
John Clarkson ◽  
Chris Earl

Design changes can be surprisingly complex. We examine the problems they cause and discuss the problems involved in predicting how changes propagate, based on empirical studies. To assist this analysis we distinguish between (a) a static background of connectivities (b) descriptions of designs, processes, resources and requirements and (c) the dynamics of design tasks acting on descriptions. The background might consist of existing designs and subsystems, or established processes used to create them. The predictability of design change is examined in terms of this model, especially the types and scope of uncertainties and where complexities arise. An industrial example of change propagation is presented in terms of the background (connectivity) - description - action model.


1995 ◽  
Vol 10 (05) ◽  
pp. 441-450 ◽  
Author(s):  
R. PERCACCI ◽  
E. SEZGIN

We study the target space duality transformations in p-branes as transformations which mix the world volume field equations with Bianchi identities. We consider an (m+p+1)-dimensional space-time with p+1 dimensions compactified, and a particular form of the background fields. We find that while a GL (2) = SL (2) × R group is realized when m = 0, only a two-parameter group is realized when m > 0.


2008 ◽  
Vol 666 (4) ◽  
pp. 400-403 ◽  
Author(s):  
B. Nikolić ◽  
B. Sazdović
Keyword(s):  
Type I ◽  

2001 ◽  
Vol 16 (27) ◽  
pp. 1751-1759 ◽  
Author(s):  
XIN WANG ◽  
JIARONG LI ◽  
JUEPING LIU

We present analytical results for the equation of state for hot gluon plasma obtained with an effective perturbation based on hard thermal loops resummation theory. The effective two-loop results depend on Debye screening and finite width of gluons as physical parameters. Considering next-to-leading Debye mass and finite width effects, we find the equation of state to be in good agreement with recent lattice results for T≳2T c .


2017 ◽  
Vol 145 (10) ◽  
pp. 4187-4203 ◽  
Author(s):  
Feng Chen ◽  
Xudong Liang ◽  
Hao Ma

An improved Doppler radar radial velocity assimilation observation operator is proposed based on the integrating velocity–azimuth process (IVAP) method. This improved operator can ingest both radial wind and its spatial distribution characteristics to deduce the two components of the mean wind within a given area. With this operator, the system can be used to assimilate information from tangential wind and radial wind. On the other hand, because the improved observation operator is defined within a given area, which can be uniformly chosen in both the observation and analysis coordinate systems, it has a thinning function. The traditional observation operator and the improved observation operator, along with their corresponding data processing modules, were implemented in the community Gridpoint Statistical Interpolation analysis system (GSI) to demonstrate the superiority of the improved operator. The results of single analysis unit experiments revealed that the two operators are comparable when the analysis unit is small. When the analysis unit becomes larger, the analysis results of the improved operator are better than those of the traditional operator because the former can ingest more wind information than the latter. The results of a typhoon case study indicated that both operators effectively ingested radial wind information and produced more reasonable typhoon structures than those in the background fields. The tangential velocity relative to the radar was retrieved by the improved operator through ingesting tangential wind information from the spatial distribution characteristics of radial wind. Because of the improved vortex intensity and structure, obvious improvements were seen in both track and intensity predictions when the improved operator was used.


1990 ◽  
Vol 16 (2) ◽  
pp. 161-174 ◽  
Author(s):  
H J Kaiser ◽  
K Scharnhorst ◽  
E Wieczorek
Keyword(s):  

1996 ◽  
Vol 05 (06) ◽  
pp. 629-648 ◽  
Author(s):  
ABHAY ASHTEKAR

Over the last two years, the canonical approach to quantum gravity based on connections and triads has been put on a firm mathematical footing through the development and application of a new functional calculus on the space of gauge equivalent connections. This calculus does not use any background fields (such as a metric) and thus well-suited to a fully non-perturbative treatment of quantum gravity. Using this framework, quantum geometry is examined. Fundamental excitations turn out to be one-dimensional, rather like polymers. Geometrical observables such as areas of surfaces and volumes of regions are purely discrete spectra. Continuum picture arises only upon coarse graining of suitable semi-classical states. Next, regulated quantum diffeomorphism constraints can be imposed in an anomaly-free fashion and the space of solutions can be given a natural Hilbert space structure. Progress has also been made on the quantum Hamiltonian constraint in a number of directions. In particular, there is a recent approach based on a generalized .Wick transformation which maps solutions to the Euclidean quantum constraints to those of the Lorentzian theory. These developments are summarized. Emphasis is on conveying the underlying ideas and overall pictures rather than technical details.


Sign in / Sign up

Export Citation Format

Share Document