scholarly journals Dark photon dark matter and fast radio bursts

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Ricardo G. Landim

AbstractThe nature of dark matter (DM) is still a mystery that may indicate the necessity for extensions of the Standard Model (SM). Light dark photons (DP) may comprise partially or entirely the observed DM density and existing limits for the DP DM parameter space arise from several cosmological and astrophysical sources. In the present work we investigate DP DM using cosmic transients, specifically fast radio bursts (FRBs). The observed time delay of radio photons with different energies have been used to constrain the photon mass or the Weak Equivalence Principle, for example. Due to the mixing between the visible and the DP, the time delay of photons from these cosmic transients, caused by free electrons in the intergalactic medium, can change and impact those constraints from FRBs. We use five detected FRBs and two associations of FRBs with gamma-ray bursts to investigate the correspondent variation on the time delay caused by the presence of DP DM. The result is virtually independent of the FRB used and this variation is very small, considering the still allowed DP DM parameter space, not jeopardizing current bounds on other contributions of the observed time delay.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1432
Author(s):  
Dmitry O. Chernyshov ◽  
Andrei E. Egorov ◽  
Vladimir A. Dogiel ◽  
Alexei V. Ivlev

Recent observations of gamma rays with the Fermi Large Area Telescope (LAT) in the direction of the inner galaxy revealed a mysterious excess of GeV. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are that it is due to either spherically distributed annihilating dark matter (DM) or an abnormal population of millisecond pulsars. We suggest an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ∼10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the “barrier” near the cloud edge formed by the self-excited MHD turbulence. This depletion of CRs inside the clouds may be a reason for the deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below a few GeV. This in turn changes the ratio between various emission components at those energies and may potentially absorb the GeV excess by a simple renormalization of key components.


2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.


2018 ◽  
Vol 2 (11) ◽  
pp. 832-835 ◽  
Author(s):  
S. R. Kulkarni

2020 ◽  
Vol 499 (1) ◽  
pp. L53-L57
Author(s):  
Shu-Cheng Yang ◽  
Wen-Biao Han ◽  
Gang Wang

ABSTRACT The weak equivalence principle (WEP) is the cornerstone of gravitational theories. At the local scale, WEP has been tested to high accuracy by various experiments. On the intergalactic distance scale, WEP could be tested by comparing the arrival time of different messengers emitted from the same source. The gravitational time delay caused by massive galaxies is proportional to γ + 1, where the parameter γ is unity in general relativity. The values of γ for different massless particles should be different if WEP is violated, i.e. Δγ is used to indicate the deviation from WEP. So far, |Δγ| has been constrained with gamma-ray bursts, fast radio bursts, etc. Here, we report a new constraint of |Δγ| by using the gravitational wave data of binary black hole coalescences in the LIGO–Virgo catalogue GWTC-1. The best constraints imply that |Δγ| ≲ 10−15 at 90 per cent confidence level.


2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


2021 ◽  
pp. 2150200
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili ◽  
Lasha Pantskhava

In this paper, a brief analysis of repeated and overlapped gamma-ray bursts, fast radio bursts and gravitational waves is done. These signals may not be emitted by isolated cataclysmic events and we suggest interpreting some of them within the impenetrable black hole model, as the radiation reflected and amplified by the black hole horizons.


Sign in / Sign up

Export Citation Format

Share Document