scholarly journals Full-heavy tetraquarks in constituent quark models

Author(s):  
Xin Jin ◽  
Yaoyao Xue ◽  
Hongxia Huang ◽  
Jialun Ping

AbstractThe full-heavy tetraquarks $$bb{\bar{b}}{\bar{b}}$$ b b b ¯ b ¯ and $$cc{\bar{c}}{\bar{c}}$$ c c c ¯ c ¯ are systematically investigated within the chiral quark model and the quark delocalization color screening model. Two structures, meson–meson and diquark–antidiquark, are considered. For the full-beauty $$bb{\bar{b}}{\bar{b}}$$ b b b ¯ b ¯ systems, there is no any bound state or resonance state in two structures in the chiral quark model, while the wide resonances with masses around $$19.1-19.4$$ 19.1 - 19.4 GeV and the quantum numbers $$J^{P}=0^{+}$$ J P = 0 + , $$1^{+}$$ 1 + , and $$2^{+}$$ 2 + are possible in the quark delocalization color screening model. For the full-charm $$cc{\bar{c}}{\bar{c}}$$ c c c ¯ c ¯ systems, the results are qualitative consistent in two quark models. No bound state can be found in the meson–meson configuration, while in the diquark–antidiquark configuration there may exist the resonance states, with masses range between 6.2 to 7.4 GeV, and the quantum numbers $$J^{P}=0^{+}$$ J P = 0 + , $$1^{+}$$ 1 + , and $$2^{+}$$ 2 + . And the separation between the diquark and the antidiquark indicates that these states may be the compact resonance states. The reported state X(6900) is possible to be explained as a compact resonance state with $$IJ^{P}=00^{+}$$ I J P = 00 + in present calculation. All these full-charm resonance states are worth searching in the experiments further.

2012 ◽  
Vol 27 (10) ◽  
pp. 1250039
Author(s):  
HONGXIA HUANG ◽  
JIALUN PING ◽  
FAN WANG

The [Formula: see text] systems with J = 0 and J = 1 are dynamically investigated within the framework of two constituent quark models: the chiral quark model and the quark delocalization color screening model. The model parameters are taken from our previous work, which gave a good description of the proton–antiproton S-wave elastic scattering cross-section experimental data. The [Formula: see text] elastic scattering processes with coupling to [Formula: see text] state are studied. The results show that, there is no s-wave bound state as indicated by an enhancement near the threshold of [Formula: see text] in J/ψ decay. However, a [Formula: see text] resonance state is given in the quark delocalization color screening model.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 155
Author(s):  
Xiaoyun Chen

In this work, the genuine resonance states of full-charm tetraquark systems with quantum numbers JPC=0++,1+−,2++ are searched in a nonrelativistic chiral quark model with the help of the Gaussian Expansion Method. In this calculation, two structures, meson-meson and diquark–antidiquark, as well as their mixing with all possible color-spin configurations, are considered. The results show that no bound states can be formed. However, resonances are possible because of the color structure. The genuine resonances are identified by the stabilization method (real scaling method). Several resonances for the full-charm system are proposed, and some of them are reasonable candidates for the full-charm states recently reported by LHCb.


2010 ◽  
Vol 25 (19) ◽  
pp. 1603-1612 ◽  
Author(s):  
MEI CHEN ◽  
FANG GONG ◽  
HONGXIA HUANG ◽  
JIALUN PING

The extended quark delocalization color screening model, which incorporates Goldstone–boson-exchange with soft cutoff, and chiral quark model are employed to do a systematic dynamical calculation of six-quark systems with strangeness. The two models give similar results, although they have different attraction mechanisms. Comparing with the previous calculation of the extended quark delocalization color screening model, in which the Goldstone–bosons are introduced with hard cutoff, the present calculation obtains a little large binding energies for most of the states. However, the conclusions are the same. The calculations show that NΩ state with IJ = 1/2, 2 is a good dibaryon candidate with narrow width, and ΩΩ state with IJ = 00 is a stable dibaryon against the strong interaction. The calculations also reveal several other possible dibaryon candidates with high angular momentum, ΔΣ*(1/2, 3), ΔΞ*(1, 3), etc. These states may have too wide width to be observed experimentally.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Xin Jin ◽  
Yuheng Wu ◽  
Xuejie Liu ◽  
Hongxia Huang ◽  
Jialun Ping ◽  
...  

AbstractIn the framework of the chiral quark model (ChQM), we systematically investigate the strange hidden-charm tetraquark systems $$cs{\bar{c}}{\bar{u}}$$ c s c ¯ u ¯ with two structures: $$q{\bar{q}}-q{\bar{q}}$$ q q ¯ - q q ¯ and $$qq-{\bar{q}}{\bar{q}}$$ q q - q ¯ q ¯ . The bound-state calculation shows that there is no any bound state in present work, which excludes the molecular state explanation ($$D^{0}D_{s}^{*-}/D^{*0}D_{s}^{-}/D^{*0}D_{s}^{*-}$$ D 0 D s ∗ - / D ∗ 0 D s - / D ∗ 0 D s ∗ - ) of the reported $$Z_{cs}(3985)^{-}$$ Z cs ( 3985 ) - or $$Z_{cs}(4000)^{+}$$ Z cs ( 4000 ) + . However, the effective potentials for the $$cs-{\bar{c}}{\bar{u}}$$ c s - c ¯ u ¯ systems show the possibility of some resonance states. By applying a stabilization calculation and coupling all channels of both two structures, two new resonance states are obtained, which are the $$IJ^{P}=\frac{1}{2} 0^{+}$$ I J P = 1 2 0 + state with the energy around 4111–4116 MeV and the $$IJ^{P} =\frac{1}{2} 1^{+}$$ I J P = 1 2 1 + state with energy around 4113–4119 MeV, respectively. Both of them are worthy of search in future experiments. Our results show that the coupling calculation between the bound channels and open channels is indispensable to provide the necessary information for experiments to search for exotic hadron states.


2010 ◽  
Vol 25 (16) ◽  
pp. 1325-1332 ◽  
Author(s):  
W. L. WANG ◽  
F. HUANG ◽  
Z. Y. ZHANG ◽  
F. LIU

The ωϕ states with spin S=0,1 and 2 are dynamically studied in a chiral SU(3) quark model by solving the resonating group method (RGM) equation. It is found that the interactions of ωϕ systems are attractive, while no ωϕ bound state or resonance state is obtained due to the insufficiency of the strength of ωϕ attractions.


2005 ◽  
Vol 20 (08n09) ◽  
pp. 1797-1802 ◽  
Author(s):  
FL. STANCU

Light and heavy pentaquarks are described within a constituent quark model based on a spin-flavor hyperfine interaction. In this model the lowest state acquires positive parity. The masses of the light antidecuplet members are calculated dynamically using a variational method. It is shown that the octet and antidecuplet states with the same quantum numbers mix ideally due to SU (3)F breaking. Masses of the charmed antisextet pentaquarks are predicted within the same model.


1988 ◽  
Vol 03 (01) ◽  
pp. 203-223 ◽  
Author(s):  
B.H.J. MCKELLAR ◽  
M.D. SCADRON ◽  
R.C. WARNER

There are currently two major QCD-inspired quark models for hadrons. Nonrelativistic potential models and ultrarelativistic bag models have both had their successes. In this paper we present the case for an alternative quark picture, emphasizing the nonperturbative dynamical breaking of chiral symmetry in QCD. The relativistic constituent quark model which emerges recovers the main results of the other approaches, and also holds better prospects for the calculation of relativistic phenomena, and for the eventual understanding of the interrelations between chiral-symmetry breaking, hadron structure and confinement.


2005 ◽  
Vol 14 (07) ◽  
pp. 995-1015 ◽  
Author(s):  
T. INOUE ◽  
V. E. LYUBOVITSKIJ ◽  
TH. GUTSCHE ◽  
AMAND FAESSLER

We study the recently discovered Θ+ baryon in the context of the perturbative chiral quark model. The basic configuration of the Θ+ is a pentaquark bound state, where the single particle wave functions are the ground state solutions of a confining potential. We classify the resulting pentaquark multiplets as the JP=1/2- and 3/2- flavor SU (3) antidecuplet. The full mass spectrum of the multiplets is determined by including the meson and gluon cloud contributions, which induce flavor SU (3) breaking. The resulting 3/2- antidecuplet is about 185 MeV heavier than the 1/2- one, mainly because of the semi-perturbative gluon effects. We assign the observed Θ+ baryon as a member of the 1/2- antidecuplet and discuss in particular its relation to the recent experimental signal for a Ξ-- baryon.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250161 ◽  
Author(s):  
M. T. LI ◽  
W. L. WANG ◽  
Y. B. DONG ◽  
Z. Y. ZHANG

We perform a systematic study of the bound state problem of [Formula: see text] and [Formula: see text] systems by using effective interaction in our chiral quark model. Our results show that both the interactions of [Formula: see text] and [Formula: see text] states are attractive, which consequently result in [Formula: see text] and [Formula: see text] bound states.


1997 ◽  
Vol 12 (22) ◽  
pp. 4079-4086 ◽  
Author(s):  
Adam F. Falk

I review the recent proposal that there are new isotriplet heavy baryons with masses approximately 2380 MeV and 5760 MeV. This prediction follows from the application of heavy spin-flavor and light SU(3) symmetries to the observed charmed and bottom baryon states. It also entails assumptions about the spin and parity quantum numbers of the observed states which are different than is commonly supposed. The discovery of such states would imply that the nonrelativistic constituent quark model is a poor predictor of heavy baryon spectroscopy. I update the analysis in light of new data which have become available.


Sign in / Sign up

Export Citation Format

Share Document