scholarly journals D-bound and the Bekenstein bound for the surrounded Vaidya black hole

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
H. Hadi ◽  
F. Darabi ◽  
K. Atazadeh ◽  
Y. Heydarzade

AbstractWe study the Vaidya black hole surrounded by the exotic quintessence-like, phantom-like and cosmological constant-like fields by means of entropic considerations. Explicitly, we show that for this thermodynamical system, the requirement of the identification of the D-bound and Bekenstein entropy bound can be considered as a thermodynamical criterion by which one can rule out the quintessence-like and phantom-like fields, and prefer the cosmological constant as a viable cosmological field.

2017 ◽  
Vol 32 (27) ◽  
pp. 1750146 ◽  
Author(s):  
Hang Liu ◽  
Xin-He Meng

In this paper, we investigate the thermodynamical properties of Schwarzschild–Beltrami–de Sitter (S–BdS) black hole introduced by Yan et al. in 2013 by introducing inertial Beltrami coordinates to traditional non-inertial Schwarzschild–de Sitter (S–dS) metric which is the exact static spherical symmetry solution of Einstein equation with a positive cosmological constant [Formula: see text]. Based on this new metric, we compute entropy on all horizons and we give the entropy bound of the black hole. Hawking temperatures are calculated by considering a perturbation to entropy relations due to that the spacetime described by these inertial coordinates is no longer a stationary spacetime in which surface gravity related to Hawking temperature is defined well on killing horizon. We also get the Smarr relations and the first law of thermodynamics. We find that the S–BdS black hole seems to have similar thermodynamical properties to S–dS black hole in the comparison between their corresponding thermodynamical quantities, although the new black hole metric is described by inertial coordinates which exclude the effects of inertial force.


1991 ◽  
Vol 06 (33) ◽  
pp. 3039-3045 ◽  
Author(s):  
JISHNU DEY ◽  
MIRA DEY ◽  
MARCELO SCHIFFER ◽  
LAURO TOMIO

The entropy bound from black hole thermodynamics can be invoked to set limits for temperatures at which hadrons can survive as a confined system. We find that this implies that the pion can be formed in heavy ion collisions, much later than heavier mesons, for example the ρ-meson, when the fireball is cooler. The temperature found in a simple model agree qualitatively with experiment. We also suggest that this may be the reason why in pion interferometry experiments the space-time volume of the pion source seems large.


2020 ◽  
Vol 29 (1) ◽  
pp. 56-58
Author(s):  
Kapil Chandra

AbstractIn our study of the validity of Hawking’s predicted radiation temperature of a black-hole, we found that the calculated temperature is another form of Zeldovich’s expression for the cosmological constant. We reasoned that as Zeldovich predicted the extreme value of cosmological constant thus Hawking might have also predicted an extreme temperature. However, the actual temperature might be something different. This result implies that all predictions based on Hawking’s radiation temperature might be incorrect.


Author(s):  
Malcolm Perry ◽  
Maria J Rodriguez

Abstract Nontrivial diffeomorphisms act on the horizon of a generic 4D black holes and create distinguishing features referred to as soft hair. Amongst these are a left-right pair of Virasoro algebras with associated charges that reproduce the Bekenstein-Hawking entropy for Kerr black holes. In this paper we show that if one adds a negative cosmological constant, there is a similar set of infinitesimal diffeomorphisms that act non-trivially on the horizon. The algebra of these diffeomorphisms gives rise to a central charge. Adding a boundary counterterm, justified to achieve integrability, leads to well-defined central charges with cL = cR. The macroscopic area law for Kerr-AdS black holes follows from the assumption of a Cardy formula governing the black hole microstates.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944005
Author(s):  
Samir D. Mathur

The vacuum must contain virtual fluctuations of black hole microstates for each mass [Formula: see text]. We observe that the expected suppression for [Formula: see text] is counteracted by the large number [Formula: see text] of such states. From string theory, we learn that these microstates are extended objects that are resistant to compression. We argue that recognizing this ‘virtual extended compression-resistant’ component of the gravitational vacuum is crucial for understanding gravitational physics. Remarkably, such virtual excitations have no significant effect for observable systems like stars, but they resolve two important problems: (a) gravitational collapse is halted outside the horizon radius, removing the information paradox, (b) spacetime acquires a ‘stiffness’ against the curving effects of vacuum energy; this ameliorates the cosmological constant problem posed by the existence of a planck scale [Formula: see text].


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kun Meng ◽  
Da-Bao Yang ◽  
Zhan-Ning Hu

A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition behaviors of the black hole in the extended phase space are studied.


Sign in / Sign up

Export Citation Format

Share Document