scholarly journals Gravitational collapse for the K-essence emergent Vaidya spacetime

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Goutam Manna

AbstractIn this paper, we study the gravitational collapse in the k-essence emergent gravity using a generalized Vaidya-type metric as a background. We also analyze the cosmic censorship hypothesis for this system. We show that the emergent gravity metric resembles closely to the new type of the generalized Vaidya metrics for null fluid collapse with the k-essence emergent mass function, where we consider the k-essence scalar field being a function solely of the advanced or the retarded time. This new type of k-essence emergent Vaidya metric has satisfied the required energy conditions. The existence of the locally naked central singularity, the strength and the strongness of the singularities for the k-essence emergent Vaidya metric are the interesting outcomes of the present work.

2011 ◽  
Vol 20 (12) ◽  
pp. 2317-2335 ◽  
Author(s):  
KANG ZHOU ◽  
ZHAN-YING YANG ◽  
DE-CHENG ZOU ◽  
RUI-HONG YUE

We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.


2021 ◽  
Vol 18 (03) ◽  
pp. 2150042
Author(s):  
G. Abbas ◽  
M. Tahir ◽  
M. R. Shahzad

In this paper, we have explored the non-static anisotropic gravitational collapse and expansion solutions in Rastall theory of gravity. The field equations have been formulated for the non-static and inhomogeneous gravitating source. The Misner–Sharp mass function, auxiliary solution and trapped condition have been used to obtained a trapped surface. The auxiliary solutions have been used to obtain the expansion and collapse solutions; these solutions depend on [Formula: see text] and parameter [Formula: see text] (which appears due to parametric form of metric components); also the range of parameter [Formula: see text] has been examined. The expansion scalar [Formula: see text] depends on parameter [Formula: see text], in the case of expansion [Formula: see text] for [Formula: see text], while for collapse [Formula: see text] with [Formula: see text]. Also, the dynamics of the gravitating spherical source has been discussed graphically with the effects of Rastall parameter [Formula: see text]. For the physically reasonable fluid, the validity of energy conditions has been discussed for expansion and collapse solutions with the various values of [Formula: see text].


Regular static axisymmetric vacuum solutions of Einstein’s field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.


2006 ◽  
Vol 15 (09) ◽  
pp. 1359-1371 ◽  
Author(s):  
K. D. PATIL ◽  
S. S. ZADE

We generalize the earlier studies on the spherically symmetric gravitational collapse in four-dimensional space–time to higher dimensions. It is found that the central singularities may be naked in higher dimensions but depend sensitively on the choices of the parameters. These naked singularities are found to be gravitationally strong that violate the cosmic censorship hypothesis.


Author(s):  
A. V. Nikolaev ◽  
S. D. Maharaj

Abstract The Vaidya metric is important in describing the exterior spacetime of a radiating star and for describing astrophysical processes. In this paper we study embedding properties of the generalized Vaidya metric. We had obtained embedding conditions, for embedding into 5-dimensional Euclidean space, by two different methods and solved them in general. As a result we found the form of the mass function which generates a subclass of the generalized Vaidya metric. Our result is purely geometrical and may be applied to any theory of gravity. When we apply Einstein’s equations we find that the embedding generates an equation of state relating the null string density to the null string pressure. The energy conditions lead to particular metrics including the anti/de Sitter spacetimes.


1974 ◽  
Vol 64 ◽  
pp. 82-91 ◽  
Author(s):  
R. Penrose

In the standard picture of gravitational collapse to a black hole, a key role is played by the hypothesis of cosmic censorship – according to which no naked space-time singularities can result from any collapse. A precise definition of a naked singularity is given here which leads to a strong ‘local’ version of the cosmic censorship hypothesis. This is equivalent to the proposition that a Cauchy hypersurface exits for the space-time. The principle that the surface area of a black hole can never decrease with time is presented in a new and simplified form which generalizes the earlier statements. A discussion of the relevance of recent work to the naked singularity problem is also given.


1997 ◽  
Vol 12 (30) ◽  
pp. 2237-2242
Author(s):  
Wiesław Rudnicki

According to the cosmic censorship hypothesis of Penrose, naked singularities should never occur in realistic collapse situations. One of the major open problems in this context is the existence of a naked singularity in the Kerr solution with |a|>m; this singularity can be interpreted as the final product of collapse of a rapidly rotating object. Assuming that certain very general and physically reasonable conditions hold, we show here, using the global techniques, that a realistic gravitational collapse of any rotating object, which develops from a regular initial state, cannot lead to the formation of a final state resembling the Kerr solution with a naked singularity. This result supports the validity of the cosmic censorship hypothesis.


2010 ◽  
Vol 25 (33) ◽  
pp. 2831-2836 ◽  
Author(s):  
M. SHARIF ◽  
AISHA SIDDIQA

We study the final outcome of gravitational collapse resulting from the plane symmetric charged Vaidya spacetime. Using the field equations, we show that the weak energy condition is always satisfied by collapsing fluid. It is found that the singularity formed is naked. The strength of singularity is also investigated by using Nolan's method. This turns out to be a strong curvature singularity in Tipler's sense and hence provides a counter example to the cosmic censorship hypothesis.


Sign in / Sign up

Export Citation Format

Share Document