scholarly journals Stability of Schwarzschild (Anti)de Sitter black holes in conformal gravity

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Daniele Lanteri ◽  
Shen-Song Wan ◽  
Alfredo Iorio ◽  
Paolo Castorina

AbstractWe study the thermodynamics of spherically symmetric, neutral and non-rotating black holes in conformal (Weyl) gravity. To this end, we apply different methods: (i) the evaluation of the specific heat; (ii) the study of the entropy concavity; (iii) the geometrical approach to thermodynamics known as thermodynamic geometry; (iv) the Poincaré method that relates equilibrium and out-of-equilibrium thermodynamics. We show that the thermodynamic geometry approach can be applied to conformal gravity too, because all the key thermodynamic variables are insensitive to Weyl scaling. The first two methods, (i) and (ii), indicate that the entropy of a de Sitter black hole is always in the interval $$2/3\le S\le 1$$ 2 / 3 ≤ S ≤ 1 , whereas thermodynamic geometry suggests that, at $$S=1$$ S = 1 , there is a second order phase transition to an Anti de Sitter black hole. On the other hand, we obtain from the Poincaré method (iv) that black holes whose entropy is $$S < 4/3$$ S < 4 / 3 are stable or in a saddle-point, whereas when $$S>4/3$$ S > 4 / 3 they are always unstable, hence there is no definite answer on whether such transition occurs. Since thermodynamics geometry takes the view that the entropy is an extensive quantity, while the Poincaré method does not require extensiveness, it is valuable to present here the analysis based on both approaches, and so we do.

2011 ◽  
Vol 26 (18) ◽  
pp. 3091-3105 ◽  
Author(s):  
PENG CHEN

Thermodynamic geometry is applied to the Born–Infeld–anti-de Sitter black hole (BIAdS) in the four dimensions, which is a nonlinear generalization of the Reissner–Nordström–AdS black hole (RNAdS). We compute the Weinhold as well as the Ruppeiner scalar curvature and find that the singular points are not the same with the ones obtained using the heat capacity. Legendre-invariant metric proposed by Quevedo and the metric obtained by using the free energy as the thermodynamic potential are obtained and the corresponding scalar curvatures diverge at the Davies points.


2018 ◽  
Vol 73 (11) ◽  
pp. 1061-1073 ◽  
Author(s):  
N.A. Hussein ◽  
D.A. Eisa ◽  
T.A.S. Ibrahim

AbstractThis paper aims to obtain the thermodynamic variables (temperature, thermodynamic volume, angular velocity, electrostatic potential, and heat capacity) corresponding to the Schwarzschild black hole, Reissner-Nordstrom black hole, Kerr black hole and Kerr-Newman-Anti-de Sitter black hole. We also obtained the free energy for black holes by using three different methods. We obtained the equation of state for rotating Banados, Teitelboim and Zanelli black holes. Finally, we used the quantum correction of the partition function to obtain the heat capacity and entropy in the quantum sense.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


2016 ◽  
Vol 94 (10) ◽  
pp. 1045-1053 ◽  
Author(s):  
Ahmad Sheykhi ◽  
Seyed Hossein Hendi ◽  
Fatemeh Naeimipour ◽  
Shahram Panahiyan ◽  
Behzad Eslam Panah

It was shown that with the combination of three Liouville-type dilaton potentials, one can derive dilaton black holes in the background of anti-de-Sitter (AdS) spaces. In this paper, we further extend the study on the dilaton AdS black holes by investigating their thermodynamic instability through a geometry approach. First, we review thermodynamic quantities of the solutions and check the validity of the first law of thermodynamics. Then, we investigate phase transitions and stability of the solutions. In particular, we disclose the effects of the dilaton field on the stability of the black holes. We also employ the geometrical approach toward thermodynamical behavior of the system and find that the divergencies in the Ricci scalar coincide with roots and divergencies in the heat capacity. We find that the behavior of the Ricci scalar around divergence points depends on the type of the phase transition.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


Sign in / Sign up

Export Citation Format

Share Document