scholarly journals Observation of Odderon effects at LHC energies: a real extended Bialas–Bzdak model study

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
T. Csörgő ◽  
I. Szanyi

AbstractThe unitarily extended Bialas–Bzdak model of elastic proton–proton scattering is applied, without modifications, to describe the differential cross-section of elastic proton–antiproton collisions in the TeV energy range, and to extrapolate these differential cross-sections to LHC energies. In this model-dependent study we find that the differential cross-sections of elastic proton–proton collision data at 2.76 and 7 TeV energies differ significantly from the differential cross-section of elastic proton–antiproton collisions extrapolated to these energies. The elastic proton–proton differential cross-sections, extrapolated to 1.96 TeV energy with the help of this extended Bialas–Bzdak model do not differ significantly from that of elastic proton–antiproton collisions, within the theoretical errors of the extrapolation. Taken together these results provide a model-dependent, but statistically significant evidence for a crossing-odd component of the elastic scattering amplitude at the at least 7.08 sigma level. From the reconstructed Odderon and Pomeron amplitudes, we determine the $$\sqrt{s}$$ s dependence of the corresponding total and differential cross-sections.

2015 ◽  
Vol 30 (14) ◽  
pp. 1550076 ◽  
Author(s):  
F. Nemes ◽  
T. Csörgő ◽  
M. Csanád

The Bialas–Bzdak model of elastic proton–proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic pp scattering not only at the lower ISR energies but also at [Formula: see text] in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton–proton scattering is predicted for the future LHC energies of [Formula: see text], 14, 15 TeV and also to 28 TeV. A nontrivial, significantly nonexponential feature of the differential cross-section of elastic proton–proton scattering is analyzed and the excitation function of the nonexponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small impact parameters.


2019 ◽  
Vol 206 ◽  
pp. 06007 ◽  
Author(s):  
T. Csörgő ◽  
R. Pasechnik ◽  
A. Ster

We detail here the convergence properties of a new model-independent imaging method, the Lévy expansion, that seems to play an important role in the analysis of the differential cross section of elastic hadron-hadron scattering.We demonstrate, how our earlier results concerning the Odderon effects in the differential cross-section of elastic proton-proton and proton-antiproton scattering as well as those related to apparent sub-structures inside the protons were obtained in a convergent and stable manner.


2019 ◽  
Vol 24 ◽  
pp. 36
Author(s):  
M. Axiotis ◽  
A. Lagoyannis ◽  
S. Fazinić ◽  
S. Harrisopulos ◽  
M. Kokkoris ◽  
...  

The application of standard-less PIGE requires the a priori knowledge of the differential cross section of the reaction used for the quantification of each detected light element. Towards this end, a lot of datasets have been published the last few years from several laboratories around the world. The discrepancies found can be resolved by applying a rigorous benchmarking procedure through the measurement of thick target yields. Such a procedure is proposed in the present paper and is applied in the case of the 19F(p,p’γ)19F reaction.


2012 ◽  
Vol 9 (3) ◽  
pp. 554-558 ◽  
Author(s):  
Baghdad Science Journal

The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 139 fb−1. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is b-tagged, are selected. The fiducial cross-section is measured to be $$ {39.6}_{-2.3}^{+2.7} $$ 39.6 − 2.3 + 2.7 fb. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.


1963 ◽  
Vol 28 (5) ◽  
pp. 943-951 ◽  
Author(s):  
W. K. McFarlane ◽  
R. J. Homer ◽  
A. W. O’Dell ◽  
E. J. Sacharidis ◽  
G. H. Baton

2012 ◽  
Vol 20 ◽  
pp. 89
Author(s):  
V. Paneta ◽  
A. Lagoyannis ◽  
A. Kafkarkou ◽  
M. Kokkoris

Differential cross sections of the 7Li(p,p0)7Li, 7Li(p,p1)7Li, 7Li(p,α0)4He, 19F(p,p0), 19F(p,α0)16O and 19F(p,α1,2)16O reactions have been determined for proton energies Elab=1500-7000 keV, using a variable energy step and for detection angles between 140-170 degrees in steps of 10 degrees. To validate the obtained results, benchmarking measurements were performed, using thick and mirror-polished BaF2 and LiF targets. The experimental data are compared to data from literature, when available, and similarities and discrepancies are presented and analyzed.


1975 ◽  
Vol 12 (1) ◽  
pp. 1-5 ◽  
Author(s):  
K. Abe ◽  
B. A. Barnett ◽  
J. H. Goldman ◽  
A. T. Laasanen ◽  
P. H. Steinberg ◽  
...  

2008 ◽  
Vol 07 (04) ◽  
pp. 777-791 ◽  
Author(s):  
BINA FU ◽  
YONG ZHOU ◽  
DONG H. ZHANG

The time-dependent wave packet method was used to calculate the state-to-state differential cross sections for abstraction and exchange processes in the title reaction on the Kurosaki–Takayanagi potential energy surface [Kurosaki Y, Takayanagi T, J Chem Phys119:7838, 2003], with the reactant HBr initially in the ground rovibrational state. It is found that the trend in the product distributions is similar for abstraction and exchange processes, but the differential cross sections are very different. For the exchange reaction, the product is mainly scattered in the backward hemisphere for collision energy up to 2.0 eV, although forward scattering gradually shows up in high collision energies. While for abstraction reaction, the differential cross section changes substantially with the collision energy, moving from predominantly backward peaked at low collision energy to predominantly forward peaked at high collision energy. The rovibrational state resolved differential cross section at collision energy of 2.0 eV exhibits two peaks for the abstraction reaction, one is around the angle of 50°, and the other at 0°. It is found that the peaks around 50°, are below the corresponding maximum j' lines provided by the kinematic constraint model, while the forward-scattered peaks straddle both sides of the kinematic limit, and are likely contributed from both the direct and the migratory reaction mechanisms as proposed by Zare and coworkers.


2015 ◽  
Vol 899 ◽  
pp. 527-546 ◽  
Author(s):  
G. Antchev ◽  
P. Aspell ◽  
I. Atanassov ◽  
V. Avati ◽  
J. Baechler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document