scholarly journals Improving radioactive contaminant identification through the analysis of delayed coincidences with an $$\alpha $$-spectrometer

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
G. Baccolo ◽  
A. Barresi ◽  
M. Beretta ◽  
D. Chiesa ◽  
M. Nastasi ◽  
...  

AbstractIn the framework of rare event searches, the identification of radioactive contaminants in ultra-pure samples is a challenging task, because the signal is often at the same level of the instrumental background. This is a rather common situation for $$\alpha $$ α -spectrometers and other detectors used for low-activity measurements. In order to obtain the target sensitivity without extending the data taking live-time, analysis strategies that highlight the presence of the signal sought should be developed. In this paper, we show how to improve the contaminant tagging capability relying on the time-correlation of radioactive decay sequences. We validate the proposed technique by measuring the impurity level of both contaminated and ultra-pure copper samples, demonstrating the potential of this analysis tool in disentangling different background sources and providing an effective way to mitigate their impact in rare event searches.

2020 ◽  
pp. 143-147
Author(s):  
A.D. Skorbun ◽  
O.A. Kuchmagra ◽  
G.I. Odinokin ◽  
V.T. Maslyuk ◽  
M.I. Romanyuk

Cluster decay, as a special type of radioactive decay, up to date, is widely investigated. Nevertheless, until now, this activity is restricted: from one side by the possibilities of theoretical analysis, where some success is obtained for light nuclei only; and from another side only by experiments for nuclei defragmentation in searching for fission on magic nuclei. However, standard methods of radiometry and statistical analysis have not yet been applied. Such possibility can be realized by searching for acts of cluster decay as a rare event on an array of alpha-decay acts of actinides, which are recorded by industrial ionization fission chambers. The scheme of the experiment is discussed, which consists in the registration of every act of alpha-decay, against the background of which it is possible to detect the presence of nuclear clusters based on isotopes of 12,14С, 20О, and others, which can be formed in the decay of 234,235U. The requirements for electronics and the background conditions for such an experiment are discussed in detail.


1998 ◽  
Vol 61 (3) ◽  
pp. 176-179 ◽  
Author(s):  
Th. Goldbrunner ◽  
G. Angloher ◽  
F.v. Feilitzsch ◽  
R.v. Hentig ◽  
M. Neff

Author(s):  
R. Kuzin ◽  
S. N. Brykin ◽  
T. Tairov

A distinctive feature of enterprises for extracting and processing uranium ore is the inevitable pollution by solid, liquid and gaseous waste. The amount of radioactive waste (RW) is most significant in the nuclear fuel cycle. In spite of its relatively low activity it is the major contributor to the formation of radiation hazards to the people and environment. The radioactivity of uranium ores and of their processing waste is due to natural radionuclides of uranium (238U and 235U) and thorium (232Th) radioactive decay chains.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Author(s):  
Melen McBride

Ethnogeriatrics is an evolving specialty in geriatric care that focuses on the health and aging issues in the context of culture for older adults from diverse ethnic backgrounds. This article is an introduction to ethnogeriatrics for healthcare professionals including speech-language pathologists (SLPs). This article focuses on significant factors that contributed to the development of ethnogeriatrics, definitions of some key concepts in ethnogeriatrics, introduces cohort analysis as a teaching and clinical tool, and presents applications for speech-language pathology with recommendations for use of cohort analysis in practice, teaching, and research activities.


2011 ◽  
Vol 21 (2) ◽  
pp. 44-54
Author(s):  
Kerry Callahan Mandulak

Spectral moment analysis (SMA) is an acoustic analysis tool that shows promise for enhancing our understanding of normal and disordered speech production. It can augment auditory-perceptual analysis used to investigate differences across speakers and groups and can provide unique information regarding specific aspects of the speech signal. The purpose of this paper is to illustrate the utility of SMA as a clinical measure for both clinical speech production assessment and research applications documenting speech outcome measurements. Although acoustic analysis has become more readily available and accessible, clinicians need training with, and exposure to, acoustic analysis methods in order to integrate them into traditional methods used to assess speech production.


Sign in / Sign up

Export Citation Format

Share Document