RATE-DEPENDENT IMPACT BEHAVIOR OF CEMENT MORTAR UNDER THREE DIFFERENT STRESS-STATES BY TAKING ACCOUNT OF DAMAGE EVOLUTION

Author(s):  
L. -L. Wang ◽  
S. -Q. Shi ◽  
J. -Y. Chen ◽  
D. -J. Huang ◽  
L. -J. Shen
2018 ◽  
Vol 183 ◽  
pp. 01052
Author(s):  
Christian C. Roth ◽  
Teresa Fras ◽  
Norbert Faderl ◽  
Dirk Mohr

Ductile fracture experiments are carried out at different stress states, strain rates and temperatures on a range of flat Mars 300 steel specimens to calibrate both a plasticity and a fracture model. To predict the onset of fracture a stress state and strain rate-dependent Hosford–Coulomb fracture initiation model is used. Single material impact experiments are performed on targets of homogenous and perforated Mars 300 plates by accelerating cylindrical Mars 300 impactors in a single-stage gas gun. It is shown that the chosen modeling approach allows accurate modeling of the plastic response as well as the fracture patterns.


2010 ◽  
Vol 19 (7) ◽  
pp. 805-820 ◽  
Author(s):  
Li-Li Wang ◽  
Feng-Hua Zhou ◽  
Zi-Jian Sun ◽  
Yong-Zhong Wang ◽  
Shao-Qiu Shi

Author(s):  
Taesun You ◽  
Yong-Rak Kim ◽  
Taehyo Park

This paper presents a two-way linked computational multiscale model and its application to predict the mechanical behavior of bone subjected to viscoelastic deformation and fracture damage. The model is based on continuum thermos-mechanics and is implemented through the finite element method (FEM). Two physical length scales (the global scale of bone and local scale of compact bone) were two-way coupled in the framework by linking a homogenized global object to heterogeneous local-scale representative volume elements (RVEs). Multiscaling accounts for microstructure heterogeneity, viscoelastic deformation, and rate-dependent fracture damage at the local scale in order to predict the overall behavior of bone by using a viscoelastic cohesive zone model incorporated with a rate-dependent damage evolution law. In particular, age-related changes in material properties and geometries in bone were considered to investigate the effect of aging, loading rate, and damage evolution characteristics on the mechanical behavior of bone. The model successfully demonstrated its capability to predict the viscoelastic response and fracture damage due to different levels of aging, loading conditions (such as rates), and microscale damage evolution characteristics with only material properties of each constituent in the RVEs.


2020 ◽  
Vol 10 (22) ◽  
pp. 8286
Author(s):  
Nicolas Bailly ◽  
Yvan Petit ◽  
Jean-Michel Desrosier ◽  
Olivier Laperriere ◽  
Simon Langlois ◽  
...  

Vinyl nitrile foams are polymeric closed-cell foam commonly used for energy absorption in helmets. However, their impact behavior has never been described in isolation. This study aims to characterize the strain rate dependent behavior of three VN foams in compression and combined compression and shear. Vinyl nitrile samples of density 97.5, 125, and 183 kg/m3 were submitted to quasi-static compression (0.01 s−1) and impacts in compression and combined compression and shear (loading direction of 45°). For impacts, a drop test rig was used, and a method was developed to account for strain rate variation during impactor deceleration. Young’s modulus and stress at plateau were correlated with foam density in both compression and combined loading. Vinyl nitrile foams were strain rate dependent: The absorbed energy at the onset of densification was two to four times higher at 100 s−1 than at 0.01 s−1. In combined loading, the compressive stress at yield was reduced by 43% at a high strain rate. Compared to expanded polypropylene, vinyl nitrile foams transmitted less stress at the onset of densification for equivalent absorbed energy and presented a larger ratio between the compression and shear stresses in combined loading (0.37 at yield). This larger ratio between the compression and shear stresses might explain why vinyl nitrile helmet liners are thought to be better at reducing head rotational acceleration than expanded polypropylene helmet liners.


2008 ◽  
Vol 6 (39) ◽  
pp. 909-924 ◽  
Author(s):  
P. Ciarletta ◽  
M. Ben Amar

The structural integrity and the biomechanical characteristics of ligaments and tendons result from the interactions between collagenous and non-collagenous proteins (e.g. proteoglycans, PGs) in the extracellular matrix. In this paper, a dissipative theory of temporary interfibrillar bridges in the anisotropic network of collagen type I, embedded in a ground substance, is derived. The glycosaminoglycan chains of decorin are assumed to mediate interactions between fibrils, behaving as viscous structures that transmit deformations outside the collagen molecules. This approach takes into account the dissipative effects of the unfolding preceding fibrillar elongation, together with the slippage of entire fibrils and the strain-rate-dependent damage evolution of the interfibrillar bridges. Thermodynamic consistency is used to derive the constitutive equations, and the transition state theory is applied to model the rearranging properties of the interfibrillar bridges. The constitutive theory is applied to reproduce the hysteretic spectrum of the tissues, demonstrating how PGs determine damage evolution, softening and non-recoverable strains in their cyclic mechanical response. The theoretical predictions are compared with the experimental response of ligaments and tendons from referenced studies. The relevance of the proposed model in mechanobiology research is discussed, together with several applications from medical practice to bioengineering science.


1978 ◽  
Vol 100 (4) ◽  
pp. 395-401 ◽  
Author(s):  
B. Larsson ◽  
B. Stora˚kers

Based on a state variable theory proposed by Onat some discriminating creep tests of stainless steel have been designed and carried out at elevated temperature conditions. Quantitative correlations of the results are sought with predictions from a physical theory for recovery creep proposed by Lagneborg. The findings are utilized to interpret the behavior of creeping members when subjected to a rapid increase in the rate of straining. Different approaches toward generalization of physical one-dimensional creep laws to multiaxial stress states are discussed. A tentative constitutive equation applicable to the solution of general boundary value problems is proposed.


Sign in / Sign up

Export Citation Format

Share Document