QUANTUM NON-DEMOLITION PHOTON COUNTING AND TIME-RESOLVED RECONSTRUCTION OF NON-CLASSICAL FIELD STATES IN A CAVITY

Author(s):  
S. HAROCHE ◽  
S. DELEGLISE ◽  
C. SAYRIN ◽  
J. BERNU ◽  
S. GLEYZES ◽  
...  
Author(s):  
Jim Vickers ◽  
Nader Pakdaman ◽  
Steven Kasapi

Abstract Dynamic hot-electron emission using time-resolved photon counting can address the long-term failure analysis and debug requirements of the semiconductor industry's advanced devices. This article identifies the detector performance parameters and components that are required to scale and keep pace with the industry's requirements. It addresses the scalability of dynamic emission with the semiconductor advanced device roadmap. It is important to understand the limitations to determining that a switching event has occurred. The article explains the criteria for event detection, which is suitable for tracking signal propagation and looking for logic or other faults in which timing is not critical. It discusses conditions for event timing, whose goal is to determine accurately when a switching event has occurred, usually for speed path analysis. One of the uses of a dynamic emission system is to identify faults by studying the emission as a general function of time.


Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2016 ◽  
Vol 16 (10) ◽  
pp. 3827-3833 ◽  
Author(s):  
Davide Tamborini ◽  
Mauro Buttafava ◽  
Alessandro Ruggeri ◽  
Franco Zappa

2020 ◽  
Vol 10 (11) ◽  
pp. 4045
Author(s):  
Alexandra Fălămaș ◽  
Sebastian A. Porav ◽  
Valer Tosa

Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.


2006 ◽  
Author(s):  
Alexander Gaiduk ◽  
Ralf Kühnemuth ◽  
Suren Felekyan ◽  
Matthew Antonik ◽  
Wolfgang Becker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document