Three-Dimensional Continuum Instabilities and Effects of Finite Strain Tensor

2010 ◽  
pp. 706-759
1997 ◽  
Vol 50 (11S) ◽  
pp. S184-S192 ◽  
Author(s):  
C. Sansour ◽  
F. G. Kollmann

The paper is concerned with a formulation of large strain viscoplasticity based on the concept of unified constitutive models as well as on an additive decomposition of a logarithmic strain tensor. The constitutive model due to Bodner and Partom is modified as to fit within the theoretical framework presented. A basic feature of the formulation is the fact that the additive structure of the infinitesimal theory is preserved in the finite strain range. Based on an essential result, a closed form of the tangent operator is derived which is very efficient from the numerical point of view. As an application, finite shell deformations are considered. The shell theory used allows for the application of three-dimensional constitutive laws and is geometrically exact. The computations are based on an enhanced strain functional where the right Cauchy-Green tensor is enhanced. Two examples of large shell deformations including loading-unloading cycles are presented.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 296
Author(s):  
Richard H. Groshong

This paper is a personal account of the origin and development of the twinned-calcite strain gauge, its experimental verification, and its relationship to stress analysis. The method allows the calculation of the three-dimensional deviatoric strain tensor based on five or more twin sets. A minimum of about 25 twin sets should provide a reasonably accurate result for the magnitude and orientation of the strain tensor. The opposite-signed strain axis orientation is the most accurately located. Where one strain axis is appreciably different from the other two, that axis is generally within about 10° of the correct value. Experiments confirm a magnitude accuracy of 1% strain over the range of 1–12% axial shortening and that samples with more than 40% negative expected values imply multiple or rotational deformations. If two deformations are at a high angle to one another, the strain calculated from the positive and negative expected values separately provides a good estimate of both deformations. Most stress analysis techniques do not provide useful magnitudes, although most provide a good estimate of the principal strain axis directions. Stress analysis based on the number of twin sets per grain provides a better than order-of-magnitude approximation to the differential stress magnitude in a constant strain rate experiment.


1993 ◽  
Vol 256 ◽  
pp. 615-646 ◽  
Author(s):  
Paolo Orlandi ◽  
Roberto Verzicco

Accurate numerical simulations of vortex rings impinging on flat boundaries revealed the same features observed in experiments. The results for the impact with a free-slip wall compared very well with previous numerical simulations that used spectral methods, and were also in qualitative agreement with experiments. The present simulation is mainly devoted to studying the more realistic case of rings interacting with a no-slip wall, experimentally studied by Walker et al. (1987). All the Reynolds numbers studied showed a very good agreement between experiments and simulations, and, at Rev > 1000 the ejection of a new ring from the wall was seen. Axisymmetric simulations demonstrated that vortex pairing is the physical mechanism producing the ejection of the new ring. Three-dimensional simulations were also performed to investigate the effects of azimuthal instabilities. These simulations have confirmed that high-wavenumber instabilities originate in the compression phase of the secondary ring within the primary one. The large instability of the secondary ring has been explained by analysis of the rate-of-strain tensor and vorticity alignment. The differences between passive scalars and the vorticity field have been also investigated.


In considering the vibrational properties of a crystal, a rigorous finite transformation of the particle displacements from their reference configuration is introduced. This transformation shows that an arbitrary set of such displacements may be regarded as made up of a rotation, a translation, a homogeneous deformation of the reference configuration, and a set of inhomogeneous deformational orthogonal modes. For a three-dimensional crystal, there are 3 N – 12 such inhomogeneous modes, which, in the limit of a large crystal can be considered wave-like. In the usual treatment beginning with the cyclic boundary conditions, 3 N wave-like modes are assumed and rotational displacements, for example, must be ignored. The present treatment accounts satisfactorily for all degrees of freedom, including rotational. Because of the non-singular nature of the above transformation, the transformation of the above modes to the normal modes proves that some normal modes are admixtures of inhomogeneous and homogeneous modes and therefore cannot possibly satisfy the Born cyclic boundary conditions. The vibrational hamiltonian is shown to contain the elastic energy and the elastic–phonon interaction terms as well as the usual wave energies. In the limit of a large crystal, it is shown that, for all processes involving phonons, the homogeneous coordinates may be regarded as effectively static, in much the same way as, in a simple theory of the Earth–Sun motion, the Sun, because of its large inertial mass, is considered stationary and its position coordinates static. The above transformation enables the case of a crystal, free or confined in a container, to be satisfactorily discussed. It is proved that the quantum mean value of the tensor whose independent elements define the homogeneous coordinates is, in the limit of a large crystal, equal to the strain tensor of the container, when it is being used to deform the crystal by being itself homogeneously deformed. A rigorous quantum treatment of crystal elastic constants may then be developed. For practical use, the 3 N – 12 inhomogeneous modes may be assumed to obey the cyclic boundary conditions. Thus a satisfactory complete basic treatment of lattice dynamics may be given which accounts for all degrees of freedom including rotation.


2010 ◽  
Vol 10 (05) ◽  
pp. 957-981 ◽  
Author(s):  
A. Y. T. LEUNG

Free vibration and buckling of pre-twisted beams exhibit interesting coupling phenomena between compression, shears, moments and torque and have been the subject of extensive research due to their importance as models of wind turbines and helicopter rotor blades. The paper investigates the influence of axial compression and torque on the natural vibration of pre-twisted straight beam based on the Euler-Bernoulli theory. The derivation begins with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry are employed to treat the pre-twist. The strain energy due to elasticity and the linear kinetic energy are obtained in classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are derived. To the best knowledge of the author, the buckling of pre-twisted beam due to initial torque has not been studied in details. The major contribution of the paper is in the consideration of the influence of initial stresses caused by initial shears, moments and torques for pre-twisted beam-columns by means of the Frenet formulae and second order strains. A number of numerical examples are given. Some particular cases are compared with existing results. It is noted that the first mode increases together with the rate of twist but the second decreases seeming to close the first two modes together. The gaps close monotonically as the rate of twist increases for natural frequencies and buckling compressions.


2011 ◽  
Vol 300 (5) ◽  
pp. R1079-R1090 ◽  
Author(s):  
Erin K. Englund ◽  
Christopher P. Elder ◽  
Qing Xu ◽  
Zhaohua Ding ◽  
Bruce M. Damon

The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (εN) and one nonzero positive strain (εP); both strains were larger in magnitude ( P < 0.05) in the deep compartment [εN = −40.4 ± 4.3%, εP = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (εN = −24.3 ± 3.9%, εP = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively ( P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.


Author(s):  
Reza Naghdabadi ◽  
Mohsen Asghari ◽  
Kamyar Ghavam

If the double contraction of a stress tensor such as T and rate of a Lagrangean strain tensor such as E, i.e. T : E˙, produces the stress power then these stress and strain tensors are called a conjugate pair. The applications of the conjugate stress and strain measures are in the development of the basic relations in nonlinear continuum mechanics analysis such as modeling of constitutive equations of elastic-plastic materials. In this paper relations for stress tensors conjugate to an arbitrary Lagrangean strain measure of Hill’s class are obtained. The results of this paper are more compact and simpler in compare with those available in the literature. The results are valid for the three dimensional Euclidean inner product space and the case of distinct eigenvalues of the right stretch tensor U.


Sign in / Sign up

Export Citation Format

Share Document