scholarly journals Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction

2011 ◽  
Vol 300 (5) ◽  
pp. R1079-R1090 ◽  
Author(s):  
Erin K. Englund ◽  
Christopher P. Elder ◽  
Qing Xu ◽  
Zhaohua Ding ◽  
Bruce M. Damon

The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (εN) and one nonzero positive strain (εP); both strains were larger in magnitude ( P < 0.05) in the deep compartment [εN = −40.4 ± 4.3%, εP = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (εN = −24.3 ± 3.9%, εP = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively ( P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yaghoub Dabiri ◽  
Kevin L. Sack ◽  
Nuno Rebelo ◽  
Peter Wang ◽  
Yunjie Wang ◽  
...  

We sought to calibrate mechanical properties of left ventricle (LV) based on three-dimensional (3D) speckle tracking echocardiographic imaging data recorded from 16 segments defined by American Heart Association (AHA). The in vivo data were used to create finite element (FE) LV and biventricular (BV) models. The orientation of the fibers in the LV model was rule based, but diffusion tensor magnetic resonance imaging (MRI) data were used for the fiber directions in the BV model. A nonlinear fiber-reinforced constitutive equation was used to describe the passive behavior of the myocardium, whereas the active tension was described by a model based on tissue contraction (Tmax). isight was used for optimization, which used abaqus as the forward solver (Simulia, Providence, RI). The calibration of passive properties based on the end diastolic pressure volume relation (EDPVR) curve resulted in relatively good agreement (mean error = −0.04 ml). The difference between the experimental and computational strains decreased after segmental strain metrics, rather than global metrics, were used for calibration: for the LV model, the mean difference reduced from 0.129 to 0.046 (circumferential) and from 0.076 to 0.059 (longitudinal); for the BV model, the mean difference nearly did not change in the circumferential direction (0.061) but reduced in the longitudinal direction from 0.076 to 0.055. The calibration of mechanical properties for myocardium can be improved using segmental strain metrics. The importance of realistic fiber orientation and geometry for modeling of the LV was shown.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Aurobrata Ghosh ◽  
Rachid Deriche

Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.


Sensors ◽  
2014 ◽  
Vol 14 (9) ◽  
pp. 17848-17863 ◽  
Author(s):  
Srđan Đorđević ◽  
Sašo Tomažič ◽  
Marco Narici ◽  
Rado Pišot ◽  
Andrej Meglič

2007 ◽  
Vol 20 (5) ◽  
pp. 574-579 ◽  
Author(s):  
M. Hori ◽  
K. Ishigame ◽  
S. Aoki ◽  
H. Kumagai ◽  
T. Araki

Diffusion tensor (DT) magnetic resonance (MR) imaging in addition to conventional MR images provide valuable information on the brain. This study compared line scan DT imaging with and without the ECG-gating technique to estimate clinical usefulness of the line scan diffusion tensor image (LSDTI) with ECG-gating in evaluating spinal cord diseases in vivo. First, five healthy volunteers participated in the comparison study. LSDWI was performed in three to five sagittal sections with a pulsed-field-gradient diffusion preparation pulse employing two different b-values (0 and 700 s/mm2) along six directions. Apparent diffusion coefficient (ADC) maps and fractional anisotropy (FA) were calculated and three-dimensional tract reconstruction and color schemes of the spinal cord were obtained. Image quality and the acquisition time of each LSDTI were compared. Second, LSDTI with ECG-gating was performed in eighteen patients with cervical spinal cord disorders and evaluated by two neuroradiologists. Images with the ECG-gated technique were all superior to those without ECG—gating. Mean extended time for LSDTI with ECG-gating was approximately two minutes. In clinical use, the ADC and FA of spinal cord in patients with cervical spondylotic myelopathy statically changed. Moreover, demonstration of fibers was correlated with clinical symptoms. ECG-gating technique is preferable to LSDTI. The ADC and FA measurements and 3D fiber tracking of LSDTI with ECG-gating are promising methods to estimate cervical spinal cord pathology in clinical use.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lipeng Ning ◽  
Filip Szczepankiewicz ◽  
Markus Nilsson ◽  
Yogesh Rathi ◽  
Carl-Fredrik Westin

AbstractProbing the cellular structure of in vivo biological tissue is a fundamental problem in biomedical imaging and medical science. This work introduces an approach for analyzing diffusion magnetic resonance imaging data acquired by the novel tensor-valued encoding technique for characterizing tissue microstructure. Our approach first uses a signal model to estimate the variance and skewness of the distribution of apparent diffusion tensors modeling the underlying tissue. Then several novel imaging indices, such as weighted microscopic anisotropy and microscopic skewness, are derived to characterize different ensembles of diffusion processes that are indistinguishable by existing techniques. The contributions of this work also include a theoretical proof that shows that, to estimate the skewness of a diffusion tensor distribution, the encoding protocol needs to include full-rank tensor diffusion encoding. This proof provides a guideline for the application of this technique. The properties of the proposed indices are illustrated using both synthetic data and in vivo data acquired from a human brain.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4610 ◽  
Author(s):  
Bart Bolsterlee ◽  
Taija Finni ◽  
Arkiev D’Souza ◽  
Junya Eguchi ◽  
Elizabeth C. Clarke ◽  
...  

Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the anatomy of complex skeletal muscles in living humans.


2018 ◽  
Author(s):  
Annika S. Sahrmann ◽  
Ngaire Susan Stott ◽  
Thor F. Besier ◽  
Justin W. Fernandez ◽  
Geoffrey G. Handsfield

ABSTRACTCerebral palsy (CP) is associated with movement disorders and reduced muscle size. This latter phenomenon has been observed by computing muscle volumes from conventional MRI, with most studies reporting significantly reduced volumes in leg muscles. This indicates impaired muscle growth, but without knowing muscle fiber orientation, it is not clear whether muscle growth in CP is impaired in the along-fiber direction (indicating shortened muscles and limited range of motion) or the cross-fiber direction (indicating weak muscles and impaired strength). Using Diffusion Tensor Imaging (DTI) we can determine muscle fiber orientation and construct 3D muscle architectures to examine along-fiber length and cross-sectional area separately. Such an approach has not been undertaken in CP. Here, we use advanced DTI sequences with fast imaging times to capture fiber orientations in the soleus muscle of children with CP and age-matched, able-bodied controls. Physiological cross sectional areas (PCSA) were reduced (37 ± 11%) in children with CP compared to controls, indicating impaired muscle strength. Along-fiber muscle lengths were not different between groups, but we observed large variance in length within CP group. This study is the first to demonstrate functional strength deficits using DTI and implicates impaired cross-sectional muscle growth in children with cerebral palsy.


1998 ◽  
Vol 275 (2) ◽  
pp. G363-G369 ◽  
Author(s):  
Richard J. Gilbert ◽  
Timothy G. Reese ◽  
Shrenik J. Daftary ◽  
R. Neal Smith ◽  
Robert M. Weisskoff ◽  
...  

The muscular anatomy of the tongue consists of a complex three-dimensional array of fibers, which together produce the variations of shape and position necessary for deglutition. To define the myoarchitecture of the intact mammalian tongue, we have utilized NMR techniques to assess the location and orientation of muscle fiber bundles through measurement of the direction-specific diffusional properties of water molecules. Whole sheep tongues were excised and imaged with a slice-selective stimulated-echo diffusion sequence in the midline sagittal plane, and three-dimensional diffusion tensors were determined for each voxel. The derived diffusion tensors were depicted graphically as octahedra whose long axes indicate local muscle fiber orientation. Two distinct groups of midline fibers were identified: 1) in-plane sagittal fibers originating in the posteroinferior region of the tongue, radiating with a fanlike projection anteriorly and superiorly and merging with vertically oriented fibers, and 2) cross-plane (transverse) fibers, oriented at right angles to the vertically aligned fibers, predominantly in the anterior and superior regions of the tongue. Regional comparison of diffusion anisotropy revealed uniform and parallel alignment (high anisotropy) in the posteroinferior region of the tongue, corresponding to the base of the genioglossus, and less uniform, orthogonally aligned fibers (low anisotropy) in the anterosuperior region of the tongue, corresponding to the core intrinsic muscles. These data indicate that lingual myoarchitecture, determined through direction-dependent mobility of water molecules, can be depicted as discrete regions of muscle fibers, whose orientation and extent of diffusion anisotropy predict local contractility.


Sign in / Sign up

Export Citation Format

Share Document