scholarly journals Exploratory Analysis of Power Spectrum and Functional Connectivity During Resting State in Young Binge Drinkers: A MEG Study

2015 ◽  
Vol 25 (03) ◽  
pp. 1550008 ◽  
Author(s):  
A. Correas ◽  
S. Rodriguez Holguín ◽  
P. Cuesta ◽  
E. López-Caneda ◽  
L. M. García-Moreno ◽  
...  

Binge Drinking (BD) is a pattern of intermittent intensive alcohol intake which has spread among young adults over the last decades. Adolescence constitutes a critical neuromaturation period in which the brain is particularly sensitive to the effects of alcohol. However, little is known about how BD affects the brain activity. This study aimed to characterize the brain's functional organization in BD and non-BD young population by means of analyzing functional connectivity (FC) and relative power spectra (PS) profiles measured with magnetoencephalography (MEG) during eyes-closed resting state. Our sample composed 73 first-year university students (35 BDs and 38 controls). Results showed that the BD subjects displayed a decreased alpha FC in frontal-parietal regions, and conversely, an enhanced FC in the delta, theta and beta bands in fronto-temporal networks. Besides the FC differences, the BD group showed a decreased PS within alpha range and an increased PS within theta range in the brain's occipital region. These differences in FC and PS measurements provide new evidence of the neurophysiological alterations related to the alcohol neurotoxicity and could represent an initial sign of an anomalous neural activity caused by a BD pattern of alcohol consumption during youth.

2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2011 ◽  
Vol 105 (6) ◽  
pp. 2753-2763 ◽  
Author(s):  
Gaëlle Doucet ◽  
Mikaël Naveau ◽  
Laurent Petit ◽  
Nicolas Delcroix ◽  
Laure Zago ◽  
...  

Spontaneous brain activity was mapped with functional MRI (fMRI) in a sample of 180 subjects while in a conscious resting-state condition. With the use of independent component analysis (ICA) of each individual fMRI signal and classification of the ICA-defined components across subjects, a set of 23 resting-state networks (RNs) was identified. Functional connectivity between each pair of RNs was assessed using temporal correlation analyses in the 0.01- to 0.1-Hz frequency band, and the corresponding set of correlation coefficients was used to obtain a hierarchical clustering of the 23 RNs. At the highest hierarchical level, we found two anticorrelated systems in charge of intrinsic and extrinsic processing, respectively. At a lower level, the intrinsic system appears to be partitioned in three modules that subserve generation of spontaneous thoughts (M1a; default mode), inner maintenance and manipulation of information (M1b), and cognitive control and switching activity (M1c), respectively. The extrinsic system was found to be made of two distinct modules: one including primary somatosensory and auditory areas and the dorsal attentional network (M2a) and the other encompassing the visual areas (M2b). Functional connectivity analyses revealed that M1b played a central role in the functioning of the intrinsic system, whereas M1c seems to mediate exchange of information between the intrinsic and extrinsic systems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Frigyes Samuel Racz ◽  
Orestis Stylianou ◽  
Peter Mukli ◽  
Andras Eke

Abstract Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation and higher degree of multifractality, whereas the highest values of entropy were found over the central and temporal regions. The revealed topology reflected well the underlying resting-state network organization of the brain. The presented results and the proposed analysis framework could improve our understanding on how resting-state brain activity is spatio-temporally organized and may provide potential biomarkers for future clinical research.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Stavros I. Dimitriadis ◽  
George A. Saridis ◽  
Marotesa Voultsidou ◽  
Vahe Poghosyan ◽  
...  

How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.


2020 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E. Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W. Williams ◽  
...  

AbstractThe brain exhibits highly organized patterns of spontaneous activity as measured by resting-state fMRI fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, though this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


2020 ◽  
Author(s):  
Maxwell A. Bertolero ◽  
Azeez Adebimpe ◽  
Ankit N. Khambhati ◽  
Marcelo G. Mattar ◽  
Daniel Romer ◽  
...  

Human learning is a complex process in which future behavior is altered via the reorganization of brain activity and connectivity. It remains unknown whether activity and connectivity differentially reorganize during learning, and, if so, how that differential reorganization tracks stages of learning across distinct brain areas. Here, we address this gap in knowledge by measuring brain activity and functional connectivity in a longitudinal fMRI experiment in which healthy adult human participants learn the values of novel objects over the course of four days. An increasing similarity in activity or functional connectivity across subjects during learning reflects reorganization toward a common functional architecture. We assessed the presence of reorganization in activity and connectivity both during value learning and during the resting-state, allowing us to differentiate common elicited processes from intrinsic processes. We found a complex and dynamic reorganization of brain connectivity and activity—as a function of time, space, and performance—that occurs while subjects learn. Spatially localized brain activity reorganizes across the brain to a common functional architecture early in learning, and this reorganization tracks early learning performance. In contrast, spatially distributed connectivity reorganizes across the brain to a common functional architecture as training progresses, and this reorganization tracks later learning performance. Particularly good performance is associated with a sticky connectivity, that persists into the resting state. Broadly, our work uncovers distinct principles of reorganization in activity and connectivity at different phases of value learning, which inform the ongoing study of learning processes more generally.


2021 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W Williams ◽  
...  

Abstract The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


2021 ◽  
Author(s):  
Xiaodi Zhang ◽  
Eric Maltbie ◽  
Shella Keilholz

AbstractRecent resting-state fMRI studies have shown that brain activity exhibits temporal variations in functional connectivity by using various approaches including sliding window correlation, co-activation patterns, independent component analysis, quasi-periodic patterns, and hidden Markov models. These methods often model the brain activity as a discretized hopping among several brain states that are defined by the spatial configurations of network activity. However, the discretized states are merely a simplification of what is likely to be a continuous process, where each network evolves over time following its unique path. To model these characteristic spatiotemporal trajectories, we trained a variational autoencoder using rs-fMRI data and evaluated the spatiotemporal features of the latent variables obtained from the trained networks. Our results suggest that there are a relatively small number of approximately orthogonal whole-brain spatiotemporal patterns that capture the most prominent features of rs-fMRI data, which can serve as the building blocks to construct all possible spatiotemporal dynamics in resting state fMRI. These spatiotemporal patterns provide insight into how activity flows across the brain in concordance with known network structures and functional connectivity gradients.


2019 ◽  
Author(s):  
Dionissios T. Hristopulos ◽  
Arif Babul ◽  
Shazia’Ayn Babul ◽  
Leyla R. Brucar ◽  
Naznin Virji-Babul

ABSTRACTChildren and youth are at a greater risk of concussions than adults, and once injured, take longer to recover. A key feature of concussion is a diffuse increase in functional connectivity; yet it remains unclear how changes in functional connectivity relate to the patterns of information flow within resting state networks following concussion and how these relate to brain function. We applied a data-driven measure of directed effective brain connectivity to compare the patterns of information flow in healthy adolescents and adolescents with subacute concussion during the resting state condition. Data from 32 healthy adolescents (mean age =16 years) and 24 concussed adolescents (mean age = 13.8 years) with subacute concussion (< 3 months post injury) took part in the study. Five minutes of resting state data EEG were collected while participants sat quietly with their eyes closed. We applied the Kleeman-Liang information flow rate to measure the transfer of information between the EEG time series of each individual at different source locations, and therefore between different brain regions. Based on the ensemble means of the magnitude of normalized information flow rate, our analysis shows that information flow in the healthy adolescents is characterized by a predominantly (L) lateralized pattern with bidirectional information flow between frontal regions, between frontal and central/temporal regions and between parietal and occipital regions. In contrast, adolescents with concussion show distinct differences in information flow marked by a more symmetrical pattern with connections evenly distributed across the entire brain, increased information flow in the posterior regions of the brain and the emergence of bidirectional, inter-hemispheric connections between the left and right temporal regions of the brain. We also find that the statistical distribution of the normalized information flow rates in each group (control and concussed) is significantly different. Our results are the first to describe altered patterns of information flow in adolescents with concussion as well as differences in the statistical distribution of information flow rate. We hypothesize that the observed changes in information flow in the concussed group are a consequence of the brain injury and indicate functional reorganization of resting state networks.


Sign in / Sign up

Export Citation Format

Share Document