Elemental analysis of jet engine lubrication oil and jet fuel using in-air PIXE

2018 ◽  
Vol 28 (03n04) ◽  
pp. 85-92
Author(s):  
Katsumi Saitoh ◽  
Akihiro Fushimi ◽  
Koichiro Sera ◽  
Nobuyuki Takegawa

To understand the elemental characteristics of the exhaust particles from a jet aircraft, we performed an element analysis using an in-air PIXE system of the different lubrication oils of a jet engine (Mobil Jet Oil II, Mobil Jet Oil 254 and Eastman Turbo Oil 2380) and the jet fuel (JET A-1) to determine the effects on the exhaust particles. A high concentration (1,400–2,500 wt.-ppm) of P was detected from the analyzed three oil samples. The high concentration of P is probably due to the tricresyl phosphate (TCP: C[Formula: see text]H[Formula: see text]O4P) contained in the oil samples. The S concentrations of the JET A-1 fuel samples with different collection dates were in the range of [Formula: see text]10 to 530 wt.-ppm. These results aid in determining the component features of nanoparticles emitted from an aircraft.

2021 ◽  
pp. 1950019
Author(s):  
Katsumi Saitoh ◽  
Koichiro Sera ◽  
Koyomi Nakazawa ◽  
Osamu Nagafuchi

To comprehend the elemental characterization of the particles emitted from an aircraft, we performed element analysis using in-vacuum PIXE for particles emitted from the carbon disc brakes and tires in addition to the exhaust particles produced by the jet engine. As for the elemental characteristics of aircraft source particulate matter, engine reversers mainly consisted of Al, Si, Ca, and Fe, and also included Ti, Cr, Mo, and W. The disc brakes mainly contained Si, Ca, and Fe, and also contained S, K, Ti, Cr, Ni, and Cu. In tires, Na, Al, Si, Ca, Fe, and Zn were mainly found, and S, K, and Ti were also detected. Thus, there was a difference in the trace elements found in the aircraft source particulate matter. These results aid in determining the component features of particles emitted from an aircraft.


Author(s):  
M. S. ASSAD ◽  
◽  
O. G. PENYAZKOV ◽  
I. I. CHERNUHO ◽  
K. ALHUSSAN ◽  
...  

This work is devoted to the study of the dynamics of combustion wave propagation in oxygen-enriched mixtures of n-heptane with air and jet fuel "Jet A-1" in a small-size pulsed detonation combustor (PDC) with a diameter of 20 mm and a length less than 1 m. Experiments are carried out after the PDC reaches a stationary thermal regime when changing the equivalence ratio (ϕ = 0.73-1.89) and the oxygen-to-air ratio ([O2/air] = 0.15-0.60). The velocity of the combustion wave is determined by measuring the propagation time of the flame front between adjacent pressure sensors that form measurement segements along the PDC.


2021 ◽  
Author(s):  
Florian Ungeheuer ◽  
Diana Rose ◽  
Dominik van Pinxteren ◽  
Florian Ditas ◽  
Stefan Jacobi ◽  
...  

<p>We present the results from a chemical characterization study of ultrafine particles (UFP), collected nearby Frankfurt International Airport where particle size distribution measurements showed high number concentrations for particles with a diameter <50 nm. Aluminium filter samples were collected at an air quality monitoring station in a distance of 4 km to Frankfurt airport, using the 13-stage cascade impactor Nano-MOUDI (MSP Model-115). The chemical characterization of the ultrafine particles in the size range of 0.010-0.018 μm, 0.018-0.032 μm and 0.032-0.056 μm was accomplished by the development of an optimized filter extraction method. An UHPLC method for chromatographic separation of homologous series of hydrophobic and high molecular weight organic compounds, followed by heated electrospray ionization (ESI) and mass analysis using an Orbitrap high-resolution mass spectrometer was developed. Using a non-target screening, ~200 compounds were detected in the positive ionization mode after filtering, in order to ensure high quality of the obtained data. We determined the molecular formula of positively charged adducts ([M+H]<sup>+</sup>; [M+Na]<sup>+</sup>), and for each impaction stage we present molecular fingerprints (Molecular weight vs Retention time, Kroll-diagram, Van-Krevelen-diagram, Kendrick mass defect plot) in order to visualize the complex chemical composition. The negative ionization mode led only to the detection of a few compounds (<20) for which reason the particle characterization focuses on the positive ionization mode. We found that the majority of detected compounds belong to homologous series of two different kinds of organic esters, which are base stocks of aircraft lubrication oils. In reference to five different jet engine lubrication oils of various manufacturers, we identified the corresponding lubricant base stocks and their additives in the ultrafine particles by the use of matching retention time, exact mass and MS/MS fragmentation pattern of single organic molecules. As the relevance of the chemical composition of UFP regarding human health is depending on the mass contribution of each compound we strived for quantification of the jet engine oil compounds. This was achieved by standard addition of purchased original standards to the native sample extracts. Two amines serving as stabilizers, one organophosphate used as an anti-wear agent/metal deactivator and two ester base stocks were quantified. Quantification of the two homologous ester series was carried out using one ester compound and cross-calibration. The quantitative determination is burdened by the uncertainty regarding sampling artefacts in the Nano-MOUDI. Therefore we characterized the cascade impactor in a lab experiment using the ester standard. Particle size distribution measurements conducted parallel to the filter sampling enables the determination of jet engine oil contribution to the UFP mass. Results indicate that aircraft emissions strongly influence the mass balance of 0.010-0.018 μm particles. This contribution decreases for bigger sized particles (0.018-0.056 μm) as presumably more sources get involved. The hereby-introduced method allows the qualitative and quantitative assignment of aircraft emissions towards the chemical composition and total mass of airport related ultrafine particles.</p>


2021 ◽  
pp. 1950016
Author(s):  
Katsumi Saitoh ◽  
Akihiro Fushimi ◽  
Nobuyuki Takegawa ◽  
Koichiro Sera

To characterize the chemical composition of aircraft exhaust particles, we developed a treatment method of jet fuel for an elemental analysis by an in-vacuum PIXE system. Eleven elements (Si, S, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, and Pb) were identified from each sample. The concentrations of S from five JET A-1 fuel samples collected on different days ranged from 30.4 to 440 wt.-ppm. The concentration level of S agreed well with the measurement results obtained by an in-air PIXE analysis, which we have previously performed to determine the major content elements and their concentration levels. Nine elements out of the identified 11 elements (Si, Cl, K, Ca, Cr, Ni, Cu, Zn, and Pb), which were not detected by the in-air PIXE analysis, were detected in all the JET A-1 fuel samples measured. Among these elements, Si, Ni, Cu, Zn, and Pb were found to be the major components. It is suggested that particles emitted from aircraft jet engines, which are generally in the size range smaller than 100 nm (ultrafine particles: UFPs), may contain Si, Ni, Cu, Zn, and Pb. These findings provide useful insights into the source apportionment of UFPs in and around airports.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 93 ◽  
Author(s):  
Jing Wu ◽  
Hong-Juan Liu ◽  
Xiang Yan ◽  
Yu-Jie Zhou ◽  
Zhang-Nan Lin ◽  
...  

It is important to develop full-performance bio-jet fuel based on alternative feedstocks. The compound 1-butanol can be transformed into jet fuel through dehydration, oligomerization, and hydrogenation. In this study, a new catalyst consisting of Zn-Mn-Co modified γ-Al2O3 was used for the dehydration of high-concentration 1-butanol to butenes. The interactive effects of reaction temperature and butanol weight-hourly space velocity (WHSV) on butene yield were investigated with response surface methodology (RSM). Butene yield was enhanced when the temperature increased from 350 °C to 450 °C but it was reduced as WHSV increased from 1 h−1 to 4 h−1. Under the optimized conditions of 1.67 h−1 WHSV and 375 °C reaction temperature, the selectivity of butenes achieved 90%, and the conversion rate of 1-butanol reached 100%, which were 10% and 6% higher, respectively, than when using unmodified γ-Al2O3. The Zn-Mn-Co modified γ-Al2O3 exhibited high stability and a long lifetime of 180 h, while the unmodified γ-Al2O3 began to deactivate after 60 h. Characterization with X-ray diffraction (XRD), nitrogen adsorption-desorption, pyridine temperature-programmed desorption (Py-TPD), pyridine adsorption IR spectra, and inductively coupled plasma atomic emission spectrometry (ICP-AES), showed that the crystallinity and acid content of γ-Al2O3 were obviously enhanced by the modification with Zn-Mn-Co, and the loading amounts of zinc, manganese, and cobalt were 0.54%, 0.44%, and 0.23%, respectively. This study provides a new catalyst, and the results will be helpful for the further optimization of bio-jet fuel production with a high concentration of 1-butanol.


2017 ◽  
Vol 14 (3) ◽  
pp. 77-93 ◽  
Author(s):  
Sumeer Khanna ◽  
Patrick McCluskey ◽  
Avram Bar-Cohen ◽  
Bao Yang ◽  
Michael Ohadi

Abstract Traditional power electronics for military and fast computing applications are bulky and heavy. The “mechanical design” of electronic structure and “materials” of construction of the components have limitations in performance under very high temperature conditions. The major concern here is “thermal management.” To be more specific, this refers to removal of high-concentration hotspot heat flux >5 kW/cm2, background heat flux >1 kW/cm2, and “miniaturization” of device within a substrate thickness of <100 μm. We report on the novel applications of contact-based thermoelectric cooling (TEC) to successful implementations of high-conductivity materials - diamond substrate grown on gallium nitride (GaN)/AlGaN transistors to keep the hotspot temperature rise of device below 5 K. The requirement for smarter and faster functionality along with a compact design is considered here. These efforts have focused on the removal of higher levels of heat flux, heat transfer across interface of junction and substrate, advanced packaging and manufacturing concepts, and integration of TEC of GaN devices to nanoscale. The “structural reliability” is a concern and we have reported the same in terms of mean time to failure (cycles) of SAC305 (96.5% tin, 3% silver, 0.5% cu) solder joint by application of Engelmaier's failure model and evaluation of stresses in the structure. The mathematical equation of failure model incorporates the failure phenomena of fatigue and creep in addition to the dwell time, average solder temperature, and plastic strain accumulation. The approach to this problem is a nonlinear finite element analysis technique, which incorporates thermal, mechanical, and thermoelectric boundary conditions.


Author(s):  
Lee G. Dodge ◽  
Clifford A. Moses

A comparative study has been performed of the drop-size distribution of sprays of emulsified and neat distillate-type aviation fuels at elevated temperatures (308K to 700K) and pressures (101 kPa to 586 kPa). All drop-size data were obtained with a Malvern Model 2200 Particle Sizer based on the forward angle diffraction pattern produced by the drops when illuminated by a collimated HeNe laser beam. Fuels included a standard multicomponent jet fuel, Jet-A, and a single component fuel, hexadecane, in both neat form and emulsified with 20 percent (by vol.) water and 2 percent (by vol.) surfactant. The initial breakup and atomization of a neat and emulsified fuel were quite similar at all conditions, and the evaporation rates appeared similar at various temperatures for pressures at or below about 300 kPa. At higher pressures with elevated temperatures the emulsified fuels of both types produce drops of significantly smaller Sauter mean diameter than the neat fuels as distance from the nozzle increases. These results are consistent with the microexplosion hypothesis, but there could also be alternative explanations. A detailed computer model which predicts heat up rates, steady state drop temperatures, evaporation rates, and drop trajectories has been used to help interpret the results. An additional point which has been observed is that the initial Sauter mean diameter produced with constant differential nozzle pressure is dependent on the air pressure with an exponent of about −0.4, i.e., SMD ∼ Pair−0.4. Some recent correlations often quoted omit the pressure (density) of air term.


Author(s):  
Shazia M. Alam ◽  
Mahdy Allam ◽  
Chittaranjan Sahay

The compressor stator assembly of a jet engine normally consists of stainless steel and Inconel alloys. Nickel based alloys can be also used as brazing material. Mechanical distortion of the stator assembly components may result during the brazing process. The coefficient of thermal expansion of the component materials, thermal history of manufacturing and operation also contribute to the stator deformation. The purpose of this work is to study the factors causing the distortion in vane stages. The study uses Finite Element Analysis tool ANSYS 5.7 for modeling the engine stator assembly. A finite element structural analysis of a single airfoil model is conducted at various repair points to assess the airfoil deformation and stress levels, before and after the brazing process. It is then used to identify materials and brazing parameters responsible for the observed distortion. The model analyzed shows general agreement between the numerical results and observations from the repair process. The probable causes of distortion are found and recommendations for fixing the distortion problem are also made.


2019 ◽  
Author(s):  
Akihiro Fushimi ◽  
Katsumi Saitoh ◽  
Yuji Fujitani ◽  
Nobuyuki Takegawa

Abstract. Jet engine aircraft are ubiquitous and significant sources of atmospheric nanoparticles. Using size-resolved particulate samples collected near a runway of the Narita International Airport, Japan, we clearly demonstrate that organic compounds in the ambient nanoparticles (diameter: <30 nm) were dominated by nearly intact forms of jet engine lubrication oil. This finding provides direct evidence for the importance of unburned lubrication oil as a source of aircraft exhaust nanoparticles and also has an implication for their environmental impacts near airports and in the upper troposphere.


Sign in / Sign up

Export Citation Format

Share Document