Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics

2019 ◽  
Vol 28 (01n02) ◽  
pp. 1940004 ◽  
Author(s):  
Md Nazmul Hasan ◽  
Edward Swinnich ◽  
Jung-Hun Seo

In recent years, the emergence of the ultrawide‐bandgap (UWBG) semiconductor materials that have an extremely large bandgap, exceeding 5eV including AlGaN/AlN, diamond, β-Ga2O3, and cubic BN, provides a new opportunity in myriad applications in electronic, optoelectronic and photonics with superior performance matrix than conventional WBG materials. In this review paper, we will focus on high power and high frequency devices based on two most promising UWBG semiconductors, β-Ga2O3 and diamond among various UWBG semiconductor devices. These two UWBG semiconductors have gained substantial attention in recent years due to breakthroughs in their growth technique as well as various device engineering efforts. Therefore, we will review recent advances in high power and high frequency devices based on β-Ga2O3 and diamond in terms of device performance metrics such as breakdown voltage, power gain, cut off frequency and maximum operating frequency.

1994 ◽  
Vol T54 ◽  
pp. 283-290 ◽  
Author(s):  
E Janzén ◽  
O Kordina ◽  
A Henry ◽  
W M Chen ◽  
N T Son ◽  
...  

MRS Bulletin ◽  
1997 ◽  
Vol 22 (3) ◽  
pp. 50-56 ◽  
Author(s):  
Karen Moore ◽  
Robert J. Trew

In recent years, SiC has received a great deal of attention as a nearly ideal material for the fabrication of high-speed, high-power transistors. The high electric breakdown field of 3.8 × 106 V/cm, high saturated electron drift velocity of 2 × 107 cm/s, and high thermal conductivity of 4.9 W/cm K indicate SiC's potential for high-power, high-frequency operation. A wide bandgap should also allow SiC field-effect transistors (FETs) to have high radio-frequency (rf) output power at high temperatures.These material qualities have been verified through outstanding device performance. Recent results for SiC metal-semiconductor field-effect transistors (MESFETs) have included superior frequency and power performance, with power gain at frequencies as high as 40 GHz and power densities as high as 3.3 W/mm. This represents significantly higher operating frequencies and power densities than current Si rf power FET technology, and nearly three times the power density of GaAs MESFETs, which are currently used in many commercial rf power applications. Similarly, SiC static induction transistors (SITs) have much higher power densities than their Si counterparts and have recently been demonstrated in modules with as much as 470-W total pulsed output power. This article describes microwave device operation, discusses material properties needed for rf power generation, and summarizes state-of-the-art SiC high-frequency device performance. Emphasis is placed on MESFETs and SITs since they are currently the most mature SiC-based device technologies.


2021 ◽  
Vol 118 (2) ◽  
pp. 022407
Author(s):  
Hideyuki Takahashi ◽  
Yuya Ishikawa ◽  
Tsubasa Okamoto ◽  
Daiki Hachiya ◽  
Kazuki Dono ◽  
...  

Author(s):  
Erhard Reschenhofer ◽  
Manveer K. Mangat

AbstractIn this paper, it is shown that the performance of various frequency-domain estimators of the memory parameter can be boosted by the inclusion of non-Fourier frequencies in addition to the regular Fourier frequencies. A fast two-stage algorithm for the efficient computation of the amplitudes at these additional frequencies is presented. In the first stage, the naïve sine and cosine transforms are computed with a modified version of the Fast Fourier Transform. In the second stage, these transforms are amended by taking the violation of the standard orthogonality conditions into account. A considerable number of auxiliary quantities, which are required in the second stage, do not depend on the data and therefore only need to be computed once. The superior performance (in terms of root-mean-square error) of the estimators based also on non-Fourier frequencies is demonstrated by extensive simulations. Finally, the empirical results obtained by applying these estimators to financial high-frequency data show that significant long-range dependence is present only in the absolute intraday returns but not in the signed intraday returns.


2020 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
Yong Yang ◽  
Wei Tu ◽  
Shuying Huang ◽  
Hangyuan Lu

Pansharpening is the process of fusing a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. In the process of pansharpening, the LRMS image is often directly upsampled by a scale of 4, which may result in the loss of high-frequency details in the fused high-resolution multispectral (HRMS) image. To solve this problem, we put forward a novel progressive cascade deep residual network (PCDRN) with two residual subnetworks for pansharpening. The network adjusts the size of an MS image to the size of a PAN image twice and gradually fuses the LRMS image with the PAN image in a coarse-to-fine manner. To prevent an overly-smooth phenomenon and achieve high-quality fusion results, a multitask loss function is defined to train our network. Furthermore, to eliminate checkerboard artifacts in the fusion results, we employ a resize-convolution approach instead of transposed convolution for upsampling LRMS images. Experimental results on the Pléiades and WorldView-3 datasets prove that PCDRN exhibits superior performance compared to other popular pansharpening methods in terms of quantitative and visual assessments.


2009 ◽  
Vol 193 ◽  
pp. 012040 ◽  
Author(s):  
F A Marino ◽  
N Faralli ◽  
D K Ferry ◽  
S M Goodnick ◽  
M Saraniti

Sign in / Sign up

Export Citation Format

Share Document