DIMENSIONAL REDUCTION OF STABLE BUNDLES, VORTICES AND STABLE PAIRS

1994 ◽  
Vol 05 (01) ◽  
pp. 1-52 ◽  
Author(s):  
OSCAR GARCÍA–PRADA
1991 ◽  
Vol 02 (05) ◽  
pp. 477-513 ◽  
Author(s):  
STEVEN B. BRADLOW ◽  
GEORGIOS D. DASKALOPOULOS

It this paper we study the space of gauge equivalence classes of pairs [Formula: see text] where [Formula: see text] represents a holomorphic structure on a complex bundle, E, over a closed Riemann Surface, and ϕ is a holomorphic section. We define a space of stable pairs and consider the moduli space problem for this space. The space of stable pairs, [Formula: see text], is related to the space of solution to the Vortex (Hermitian-Yang-Mills-Higgs) equation. Using the parameter, τ, which appears in this equation we can define subspaces [Formula: see text] within [Formula: see text]. We show that under suitable restrictions on τ and the degree of E, the space [Formula: see text] is naturally a finite dimensional, Hausdorff, compact Kähler manifold. We show further that there is a natural holomorphic map from this space onto the Seshadri compactification of the moduli space of stable bundles and that this map is generically a fibration.


1993 ◽  
Vol 04 (06) ◽  
pp. 903-925 ◽  
Author(s):  
STEVEN BRADLOW ◽  
GEORGIOS D. DASKALOPOULOS

In this paper we continue our investigation of the moduli space of stable pairs introduced in Part I. We obtain certain topological information, and we give a proof that this moduli space admits the structure of a nonsingular projective variety. We show that the natural map from the moduli space of stable pairs onto the Seshadri compactification of stable bundles is a morphism of algebraic varieties.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 170
Author(s):  
Michele Caselle

In this review, after a general introduction to the effective string theory (EST) description of confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased. We show that, as the deconfinement point is approached from below, several universal features of confining gauge theories, like the ratio Tc/σ0, the linear increase of the squared width of the flux tube with the interquark distance, or the temperature dependence of the interquark potential, can be accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the EST behaviour turns out to be in good agreement with what was predicted by conformal invariance or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.


2018 ◽  
Vol 78 (4) ◽  
pp. 4311-4326 ◽  
Author(s):  
Weijing Song ◽  
Lizhe Wang ◽  
Peng Liu ◽  
Kim-Kwang Raymond Choo

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Chiung Hwang ◽  
Sara Pasquetti ◽  
Matteo Sacchi

Abstract We construct a family of 4d$$ \mathcal{N} $$ N = 1 theories that we call $$ {E}_{\rho}^{\sigma } $$ E ρ σ [USp(2N)] which exhibit a novel type of 4d IR duality very reminiscent of the mirror duality enjoyed by the 3d$$ \mathcal{N} $$ N = 4 $$ {T}_{\rho}^{\sigma } $$ T ρ σ [SU(N)] theories. We obtain the $$ {E}_{\rho}^{\sigma } $$ E ρ σ [USp(2N)] theories from the recently introduced E[USp(2N )] theory, by following the RG flow initiated by vevs labelled by partitions ρ and σ for two operators transforming in the antisymmetric representations of the USp(2N) × USp(2N) IR symmetries of the E[USp(2N)] theory. These vevs are the 4d uplift of the ones we turn on for the moment maps of T[SU(N)] to trigger the flow to $$ {T}_{\rho}^{\sigma } $$ T ρ σ [SU(N)]. Indeed the E[USp(2N)] theory, upon dimensional reduction and suitable real mass deformations, reduces to the T[SU(N)] theory. In order to study the RG flows triggered by the vevs we develop a new strategy based on the duality webs of the T[SU(N)] and E[USp(2N)] theories.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


Sign in / Sign up

Export Citation Format

Share Document