Generation of chaotic attractors without equilibria via piecewise linear systems

2017 ◽  
Vol 28 (01) ◽  
pp. 1750008 ◽  
Author(s):  
R. J. Escalante-González ◽  
E. Campos-Cantón

In this paper, we present a mechanism of generation of a class of switched dynamical system without equilibrium points that generates a chaotic attractor. The switched dynamical systems are based on piecewise linear (PWL) systems. The theoretical results are formally given through a theorem and corollary which give necessary and sufficient conditions to guarantee that a linear affine dynamical system has no equilibria. Numerical results are in accordance with the theory.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yanfen Cao ◽  
Yuangong Sun

We investigate consensus problem for third-order multiagent dynamical systems in directed graph. Necessary and sufficient conditions to consensus of third-order multiagent systems have been established under three different protocols. Compared with existing results, we focus on the relationship between the scaling strengths and the eigenvalues of the involved Laplacian matrix, which guarantees consensus of third-order multiagent systems. Finally, some simulation examples are given to illustrate the theoretical results.


2014 ◽  
Vol 24 (12) ◽  
pp. 1450158 ◽  
Author(s):  
Song-Mei Huan ◽  
Xiao-Song Yang

For a class of 4-dim piecewise linear dynamical systems, some sufficient conditions for the existence of homoclinic orbit and chaotic invariant set are provided. Especially, the existence of chaotic invariant set is proved in terms of the constructed Poincaré map with a topological horseshoe. A numerical example with chaotic attractor is provided to illustrate our main result.


1997 ◽  
Vol 07 (07) ◽  
pp. 1617-1634 ◽  
Author(s):  
G. Millerioux ◽  
C. Mira

Recently, it was demonstrated that two chaotic dynamical systems can synchronize each other, leading to interesting applications as secure communications. We propose in this paper a special class of dynamical systems, noninvertible discrete piecewise linear, emphasizing on interesting advantages they present compared with continuous and differentiable nonlinear ones. The generic aspect of such systems, the simplicity of numerical implementation, and the robustness to mismatch of technological parameters make them good candidates. The classical concept of controllability in the control theory is presented and used in order to choose and predict the number of appropriate variables to be transmitted for synchronization. A necessary and sufficient condition of chaotic synchronization is established without computing numerical quantities, introducing a state affinity structure of chaotic systems which provides an a priori establishment of synchronization.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450133 ◽  
Author(s):  
Haijun Wang ◽  
Xianyi Li

After a 3D Lorenz-like system has been revisited, more rich hidden dynamics that was not found previously is clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles as well as homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b > 0. All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper is to not only show those dynamical properties hiding in this system, but also (more mainly) present a kind of way and means — both "locally" and "globally" and both "finitely" and "infinitely" — to comprehensively explore a given system.


Author(s):  
V. Madhusudanan ◽  
S. Vijaya

In this work, the dynamical behavior of the system with two preys and one predator population is investigated. The predator exhibits a Holling type II response to one prey which is harvested and a Beddington-DeAngelis functional response to the other prey. The boundedness of the system is analyzed. We examine the occurrence of positive equilibrium points and stability of the system at those points. At trivial equilibrium E0and axial equilibrium (E1); the system is found to be unstable. Also we obtain the necessary and sufficient conditions for existence of interior equilibrium point (E6) and local and global stability of the system at the interior equilibrium (E6): Depending upon the existence of limit cycle, the persistence condition is established for the system. The numerical simulation infer that varying the parameters such as e and λ1it is possible to change the dynamical behavior of the system from limit cycle to stable spiral. It is also observed that the harvesting rate plays a crucial role in stabilizing the system.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 99 ◽  
Author(s):  
Ahmed M. Ali ◽  
Saif M. Ramadhan ◽  
Fadhil R. Tahir

The complex grid of scroll chaotic attractors that are generated through nonlinear electronic circuits have been raised considerably over the last decades. In this paper, it is shown that a subclass of Cellular Nonlinear Networks (CNNs) allows us to generate complex dynamics and chaos in symmetry pattern. A novel grid of scroll chaotic attractor, based on a new system, shows symmetry scrolls about the origin. Also, the equilibrium points are located in a manner such that the symmetry about the line x=y has been achieved. The complex dynamics of system can be generated using CNNs, which in turn are derived from a CNN array (1×3) cells. The paper concerns on the design and implementation of 2×2 and 3×3 2D-grid of scroll via the CNN model. Theoretical analysis and numerical simulations of the derived model are included. The simulation results reveal that the grid of scroll attractors can be successfully reproduced using PSpice.


2017 ◽  
Vol 39 (3) ◽  
pp. 604-619 ◽  
Author(s):  
SIDDHARTHA BHATTACHARYA ◽  
TULLIO CECCHERINI-SILBERSTEIN ◽  
MICHEL COORNAERT

Let$X$be a compact metrizable group and let$\unicode[STIX]{x1D6E4}$be a countable group acting on$X$by continuous group automorphisms. We give sufficient conditions under which the dynamical system$(X,\unicode[STIX]{x1D6E4})$is surjunctive, i.e. every injective continuous map$\unicode[STIX]{x1D70F}:X\rightarrow X$commuting with the action of$\unicode[STIX]{x1D6E4}$is surjective.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2009 ◽  
Vol 09 (04) ◽  
pp. 635-655 ◽  
Author(s):  
H. BRUIN ◽  
M. NICOL ◽  
D. TERHESIU

For a σ-finite measure preserving dynamical system (X, μ, T), we formulate necessary and sufficient conditions for a Young tower (Δ, ν, F) to be a (measure theoretic) extension of the original system. Because F is pointwise dual ergodic by construction, one immediate consequence of these conditions is that the Darling–Kac theorem carries over from F to T. One advantage of the Darling–Kac theorem in terms of Young towers is that sufficient conditions can be read off from the tail behavior and we illustrate this with relevant examples. Furthermore, any two Young towers with a common factor T, have return time distributions with tails of the same order.


Sign in / Sign up

Export Citation Format

Share Document