Size and composition effect on structural properties and melting behaviors of Cu–Ag–Au ternary nanoalloys

2020 ◽  
Vol 31 (06) ◽  
pp. 2050078
Author(s):  
Huseyin Yildirim ◽  
Haydar Arslan

Structural optimization of ternary Cu–Ag–Au nanoalloys with 38 and 55 atoms was performed using the basin-hopping algorithm and the Gupta many-body potential was adopted to model interatomic interactions. The optimization results show that, while the Ag atoms prefer to segregate to the surface, Cu atoms were located at the core of the nanoalloy due to the higher surface and cohesive energy, whereas Au atoms mainly are located on the surface of the nanoalloys. It is found that the size has little effect on the segregation phenomena of Cu, Ag and Au atoms in the Cu–Ag–Au ternary nanoalloy. We estimated the melting temperatures of Cu–Ag–Au ternary nanoalloys using caloric curves and Lindemann index data obtained from classical molecular dynamics (MD) simulations. The results showed that the melting temperature is closely associated with the size and composition of the nanoalloys and varying the composition gives rise to a fluctuation in melting temperatures. Also, structural evolutions and dynamical behaviors of nanoalloys in melting process are investigated with root mean square displacement (RMSD).

2018 ◽  
Vol 29 (09) ◽  
pp. 1850084 ◽  
Author(s):  
Ali Kemal Garip

Structural optimization of ternary PdmPt[Formula: see text]Ag[Formula: see text] nanoalloys was performed using the basin-hopping algorithm, and the Gupta many-body potential was adopted to model interatomic interaction. The optimization results show that all compositions have a structure based on icosahedron with a core–shell segregation. While the Ag atoms prefer to segregate to the surface, Pd and Pt atoms were located at the core of the cluster due to the higher surface and cohesive energy. The single platinum atom with the highest cohesive energy in Pd[Formula: see text]Pt1Ag[Formula: see text] nanoalloy was located at the center of the cluster. Also in all other compositions except Pd[Formula: see text]Ag[Formula: see text], Pd atoms occupy the second shell position of the icosahedron structure. We used classical molecular dynamics (MD) simulations in canonical ensemble conditions (NVT) to investigate the melting temperatures of ternary PdmPt[Formula: see text]Ag[Formula: see text] nanoalloys with the interatomic interactions modeled by the same potential with optimizations. The icosahedral structures were taken as the initial configurations for MD simulations. We obtained caloric curves and Lindemann indexes to investigate the melting transitions. The simulation results showed that varying the composition gives rise to a fluctuation in melting temperatures. The highest melting temperature belongs to the Pd9Pt4Ag[Formula: see text] nanoalloy cluster within the other compositions. However, the relative stability investigation indicates the Pd8Pt5Ag[Formula: see text] nanoalloy cluster as the most stable composition. The Lindemann indexes obtained for the second and third shell of icosahedral structures show that the melting takes place as a whole without any surface premelting.


2007 ◽  
Vol 18 (08) ◽  
pp. 1351-1359 ◽  
Author(s):  
HAYDAR ARSLAN

The structure and energetics of Pd N (N = 5–80) clusters have been studied extensively by a Monte Carlo method based on Sutton–Chen many-body potential. The basin-hopping algorithm is used to find the low-energy minima on the potential energy surface for each nuclearity. A variety of structure types (icosahedral, decahedral and fcc closed-packed) are observed for Pd clusters. Some of the icosahedral global minima do not have a central atom. The resulting structures have been compared with the previous theoretical results.


Author(s):  
Hüseyin Yıldırım ◽  
Ali Kemal Garip

A systematic theoretical investigation of structural and energetic behaviors of 55-atom Pt–Ag–Au ternary nanoalloys has been performed in two different composition systems. We have performed Gupta and Density Functional Theory (DFT) approaches on chosen systems. The Basin-Hopping algorithm is used for structural optimizations of PtnAg[Formula: see text]Au[Formula: see text] ([Formula: see text]–13) and PtnAu[Formula: see text]Ag[Formula: see text] ([Formula: see text]–13) ternary nanoalloys with Gupta many-body potential to model interatomic interactions. Local optimization results show that while the tendency of Au atoms to be located varies according to the composition system, the tendency of Pt and Ag atoms to be located does not change in both. For all compositions of Pt–Ag–Au nanoalloys, the structures with the best chemical ordering were then reoptimized by DFT relaxations and the mixing energies of the Gupta and DFT levels were compared. Our mixing energy analysis showed that PtnAg[Formula: see text]Au[Formula: see text] ([Formula: see text]–13) nanoalloys are not energetically suitable for mixing at both Gupta and DFT level. Also, mixing energy variations of PtnAu[Formula: see text]Ag[Formula: see text] ([Formula: see text]–13) nanoalloys obtained at Gupta level does not agree with the one obtained at DFT level. In addition, it has been found that the minimization energy changes when an atom in the central site is exchanging by an atom in the second shell and surface.


2008 ◽  
Vol 19 (08) ◽  
pp. 1243-1255 ◽  
Author(s):  
HAYDAR ARSLAN

The structure and energetic of Palladium-Cobalt clusters (N = 11–20) have been studied extensively by a Monte Carlo method based on Sutton–Chen many-body potential. The basin-hopping algorithm was used to determine the global minima of bimetallic clusters. The structural changes with cluster size were observed. Most of the structures had built on icosahedral packing. Second energy difference analyzes were performed to investigate the relative stability of a cluster with respect to its size and composition is discussed.


1995 ◽  
Vol 73 (3-4) ◽  
pp. 143-146 ◽  
Author(s):  
I. Akgün

In the present work, a recently developed empirical many-body potential-energy function (PEF) is first used, as an application, to investigate the dynamical behaviors of the face-centred-cube d-band metals, Cu and Ni. The new PEF contains both two- and three-body atomic interactions. The two-body potential is a kind of hybrid function and the three-body potential is expressed in terms of the two-body interactions. The parameters defining the PEF for the metals are computed following a procedure similar to a method given by Girifalco and Weizer. The input data for evaluating the necessary parameters are independent of the phonon frequencies and elastic constants of the metals. The phonon frequencies along the principal symmetry directions of Cu and Ni are calculated using the computed two- and three-body force constants. The results are found to be in good agreement with the corresponding experimental values.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


2021 ◽  
Vol 155 (2) ◽  
pp. 024503
Author(s):  
Amanda A. Chen ◽  
Alexandria Do ◽  
Tod A. Pascal

2021 ◽  
Author(s):  
Théo Jaffrelot Inizan ◽  
Frédéric Célerse ◽  
Olivier Adjoua ◽  
Dina El Ahdab ◽  
Luc-Henri Jolly ◽  
...  

We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs).


2021 ◽  
Vol 140 (4) ◽  
Author(s):  
Nicolas Louis ◽  
Stephan Kohaut ◽  
Michael Springborg

AbstractUsing a combination of genetic algorithms for the unbiased structure optimization and a Gupta many-body potential for the calculation of the energetic properties of a given structure, we determine the putative total-energy minima for all $$\hbox {Ag}_{m} \hbox {Rh}_n$$ Ag m Rh n clusters with a total number of atoms $$m+n$$ m + n up to 55. Subsequently, we use various descriptors to analyze the obtained structural and energetic properties. With the help of a similarity function, we show that the pure Ag and Rh clusters are structurally similar for sizes up to around 20 atoms. The same approach gives that the mixed clusters tend to possess a larger structural similarity with the pure Rh clusters than with the pure Ag clusters. However, for clusters with $$m\simeq n\ge 25$$ m ≃ n ≥ 25 , other structures dominate. The effective coordination numbers for the Ag and Rh atoms as well as the radial distributions of those atoms indicate that there is a tendency towards segregation with Rh atoms forming an inner part and the Ag atoms forming a shell. Only few clusters, all with a fairly large total number of atoms, are found to be particularly stable.


Sign in / Sign up

Export Citation Format

Share Document