Anti-inflammatory Effects ofScoparia dulcisL. and Betulinic Acid

2011 ◽  
Vol 39 (05) ◽  
pp. 943-956 ◽  
Author(s):  
Jen-Chieh Tsai ◽  
Wen-Huang Peng ◽  
Tai-Hui Chiu ◽  
Shang-Chih Lai ◽  
Chao-Ying Lee

The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract.

2012 ◽  
Vol 40 (03) ◽  
pp. 581-597 ◽  
Author(s):  
Chi-Ren Liao ◽  
Yuan-Shiun Chang ◽  
Wen-Huang Peng ◽  
Shang-Chih Lai ◽  
Yu-Ling Ho

We investigated possible mechanisms of analgesic and anti-inflammatory activities of the methanol extract from the leaf of Elaeagnus oldhamii Maxim. (EOMeOH). EOMeOHwas evaluated for its analgesic activity in acetic acid-induced writhing response and formalin test, and anti-inflammatory effect was examined by λ-carrageenan-induced paw edema assay. We detected the activities of GPx, GRd and SOD in the liver, and the levels of inflammatory mediators including IL-1β, IL-6, TNF-α, COX-2, MDA and NO in the edema paw to investigate the mechanism of action against inflammation. Total polyphenol, flavonoid and flavanol contents of EOMeOHwere detected to explore its antioxidant activities. Results showed that, in the analgesic test, EOMeOHdecreased acetic acid-induced writhing response and the licking time in the late phase of formalin test. In the anti-inflammatory test, EOMeOHdecreased paw edema at the 2nd, 3rd, 4th and 5th h after λ-carrageenan had been injected. EOMeOHincreased the activities of SOD and GPx in liver tissue and decreased MDA, NO, IL-1β, IL-6, TNF-α and COX-2 levels in paw edema tissue at the 3rd h after λ-carrageenan-induced inflammatory reaction. EOMeOHexhibited abundant polyphenol, flavonoid and flavanol contents. In HPLC fingerprint test of EOMeOH, two index ingredients, ursolic acid and pomolic acid, were isolated from EOMeOHand were exhibited in HPLC chromatographic analysis. The results demonstrated analgesic and anti-inflammatory effects of EOMeOH. It was indicated that the anti-inflammatory mechanism of EOMeOHmay be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx and GRd in the liver. Additionally, EOMeOHdecreased IL-1β, IL-6, TNF-α and COX-2 levels in the edema paw. The results suggested its value in future development of herbal medicine for the treatment of inflammatory diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chi-Ren Liao ◽  
Chun-Pin Kao ◽  
Wen-Huang Peng ◽  
Yuan-Shiun Chang ◽  
Shang-Chih Lai ◽  
...  

This study investigated possible analgesic and anti-inflammatory mechanisms of the methanol extract ofFicus pumila(FPMeOH). Analgesic effects were evaluated in two models including acetic acid-induced writhing response and formalin-induced paw licking. The results showedFPMeOHdecreased writhing response in the acetic acid assay and licking time in the formalin test. The anti-inflammatory effect was evaluated by λ-carrageenan-induced mouse paw edema and histopathological analyses.FPMeOHsignificantly decreased the volume of paw edema induced by λ-carrageenan. Histopathologically,FPMeOHabated the level of tissue destruction and swelling of the edema paws. This study indicated anti-inflammatory mechanism ofFPMeOHmay be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx, and GRd in the liver. Additionally,FPMeOHalso decreased the level of inflammatory mediators such as IL-1β, TNF-α, and COX-2. HPLC fingerprint was established and the contents of three active ingredients, rutin, luteolin, and apigenin, were quantitatively determined. This study provided evidence for the classical treatment ofFicus pumilain inflammatory diseases.


2012 ◽  
Vol 40 (04) ◽  
pp. 813-831 ◽  
Author(s):  
You-Chang Oh ◽  
Won-Kyung Cho ◽  
Yun Hee Jeong ◽  
Ga Young Im ◽  
Min Cheol Yang ◽  
...  

Sipjeondaebotang (SJ) has been used as a traditional drug in east-Asian countries. In this study, to provide insight into the biological effects of SJ and SJ fermented by Lactobacillus, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in macrophages. The investigation was focused on whether SJ and fermented SJ could inhibit the production of pro-inflammatory mediators such as prostaglandin (PG) E2 and nitric oxide (NO) as well as the expressions of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in LPS-stimulated RAW 264.7 cells. We found that SJ modestly inhibited LPS-induced PGE2, NO and TNF-α production as well as the expressions of COX-2 and iNOS. Interestingly, fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, fermented SJ exhibited increased inhibition of p38 MAPK and c-Jun NH2-terminal kinase (JNK) MAPK phosphorylation as well as NF-κB p65 translocation by reduced IκBα degradation compared with either untreated controls or unfermented SJ. High performance liquid chromatography (HPLC) analysis showed fermentation by Lactobacillus increases liquiritigenin and cinnamyl alcohol contained in SJ, which are known for their anti-inflammatory activities. Finally, SJ fermented by Lactobacillus exerted potent anti-inflammatory activity by inhibiting MAPK and NF-κB signaling in RAW 264.7 cells.


2009 ◽  
Vol 6 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Mengjie Wu ◽  
Zhiyuan Gu

Moutan Cortex, a widely used traditional Chinese medicine for the treatment of various diseases, is the root bark ofPaeonia suffruticosa Andrews(Paeoniaceae). Most of the pharmacological investigations of Moutan Cortex have been addressed to its central nervous system activities, anti-oxidative and sedative actions. Otherwise, there are few reports about the active compounds with anti-inflammatory activity of Moutan Cortex. The aim of the present study was to screen and identify bioactive compounds with anti-inflammatory effect from Moutan Cortex. With the aid of preparative high performance liquid chromatography (HPLC) technique, ethyl acetate and ethanol extract of Moutan Cortex were isolated into twenty-two fractions. Bioactivities of these fractions were evaluated by measuring expression of tumor necrosis factor-α (TNF-α) in rat synoviocytes subjected to interleukin-1β (IL-1β). Eight compounds were isolated from six active fractions and identified by HPLC/MSn. Purified compounds, paeoniflorin, paeonol and pentagalloylglucose resulted in dose-dependent inhibition of TNF-α synthesis and IL-6 production in synoviocytes treated with proinflammatory mediator. These results suggested that paeonol, paeoniflorin, glycosides and pentagalloylglucose contribute to the anti-inflammatory effect of Moutan Cortex.


2008 ◽  
Vol 36 (06) ◽  
pp. 1145-1158 ◽  
Author(s):  
Su-Jin Kim ◽  
Jung-Sun Kim ◽  
In-Young Choi ◽  
Dong-Hyun Kim ◽  
Min-Cheol Kim ◽  
...  

Schizonepeta tenuifolia (ST) is a well-known herb to treat the cold and its associated headache. However, the anti-inflammatory mechanism of ST in mouse peritoneal macrophages is not clear. In this study, we demonstrated that ST inhibited lipopolysaccaride (LPS)-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. The maximal inhibition rate of TNF-α and IL-6 production by ST (2 mg/ml) was 48.01 ± 2.8% and 56.45 ± 2.8%, respectively. During the inflammatory process, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were increased in mouse peritoneal macrophages. However, treated with ST decreased the protein level of COX-2 and iNOS, as well as the production of PGE2and NO in LPS-stimulated mouse peritoneal macrophages. In addition, ST inhibited the phosphorylation of MAPK. Taken together, the results of this study suggest an important molecular mechanism by which ST reduces inflammation, which may explain its beneficial effect in the regulation of inflammatory reactions.


2013 ◽  
Vol 41 (02) ◽  
pp. 405-423 ◽  
Author(s):  
Jung-Chun Liao ◽  
Shyh-Shyun Huang ◽  
Jeng-Shyan Deng ◽  
Chao-Ying Lee ◽  
Ying-Chih Lin ◽  
...  

Actinidia callosa var. ephippioides (ACE) has been widely used to treat anti-pyretic, antinociceptive, anti-inflammation, abdominal pain and fever in Taiwan. This study aims to determine the mechanism of anti-inflammatory activities of ethyl acetate fraction of ACE (EA-ACE) using a model of λ-carrageenan (Carr)-induced paw edema in mouse model. In HPLC analysis, chemical characterization of EA-ACE was established. In order to investigate the anti-inflammatory mechanism of EA-ACE, we have detected the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and the levels of malondialdehyde (MDA) in the paw edema. Serum NO, tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) were evaluated. Chemical characterization from HPLC indicated that EA-ACE contains betulinic acid, ursolic acid and oleanolic acid. In the anti-inflammatory test, EA-ACE decreased the paw edema after Carr administration, increased the activities of CAT, SOD, and GPx and decreased the MDA level in the edema paw at the 5th hr after Carr injection. EA-ACE affects the serum NO, TNF-α, and IL-1β levels at the 5th hr after Carr injection. EA-ACE decreased Carr-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions by Western blotting. Actinidia callosa var. ephippioides have the potential to provide a therapeutic approach to inflammation-associated disorders.


2009 ◽  
Vol 37 (03) ◽  
pp. 573-588 ◽  
Author(s):  
Shang-Chih Lai ◽  
Wen-Huang Peng ◽  
Shun-Chieh Huang ◽  
Yu-Ling Ho ◽  
Tai-Hung Huang ◽  
...  

In this study, we evaluated the analgesic effect of methanol extract from Desmodium triflorum DC (MDT) by using animal models of acetic acid-induced writhing response and formalin test. The anti-inflammatory effect of MDT was investigated by λ-carrageenan-induced paw edema in mice. In order to study the anti-inflammatory mechanism of MDT, we detected the activities of glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver, the levels of interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), malondialdehyde (MDA) and nitric oxide (NO) in the edema paw tissue. In the analgesic test, MDT (0.5 and 1.0 g/kg) decreased the acetic acid-induced writhing response and the licking time on the late phase in the formalin test. In the anti-inflammatory test, MDT (0.5 and 1.0 g/kg) decreased the paw edema at the 3rd, 4th, 5th and 6th hour after λ-carrageenan administration. On the other hand, MDT increased the activities of SOD and GRd in liver tissues and decreased the MDA level in the edema paw at the 3rd hour after λ-carrageenan-induced inflammation. MDT also affected the levels of interleukin-1β, tumor necrosis factor-α, NO and MDA which were induced by λ-carrageenan. The results suggested that MDT possessed analgesic and anti-inflammatory effects. The anti-inflammatory mechanism of MDT might be related to the decreases in the level of MDA in the edema paw via increasing the activities of SOD and GRd in the liver, and the NO level via regulating the IL-1β production and the level of TNF-α in the inflamed tissues.


2014 ◽  
Vol 42 (06) ◽  
pp. 1485-1506 ◽  
Author(s):  
Shyh-Shyun Huang ◽  
Jeng-Shyan Deng ◽  
Jaung-Geng Lin ◽  
Chao-Ying Lee ◽  
Guan-Jhong Huang

In this study, we have investigated the anti-inflammatory effects of trilinolein (TL) using a lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with different concentrations of TL together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1 (IL-1β), and IL-6 production was detected. Western blotting revealed that TL blocked the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-κB), IκBα, and mitogen-activated protein kinases (MAPKs). In the anti-inflammatory test, TL decreased the paw edema at the 5th h after λ-Carr administration in paw edema. We also demonstrated TL significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5th h after Carr injection. TL decreased the NO and TNF-α levels on the serum level at the 5th h after Carr injection. Western blotting revealed that TL decreased Carr-induced iNOS and COX-2 expressions at the 5th h in the edema paw. The anti-inflammatory mechanisms of TL might be related to the decrease in the level of iNOS, COX-2, IκBα, and MAPK pathway through the suppression of TNF-α, IL-1β, and IL-6.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Debabrata Modak ◽  
Subhashis Paul ◽  
Sourav Sarkar ◽  
Subarna Thakur ◽  
Soumen Bhattacharjee

Abstract Background The fronds of Drynaria quercifolia have traditionally been used in rheumatic pain management. The goal of the present study was to validate the potent anti-inflammatory and anti-rheumatoid properties of the methanolic-extract of its rhizome using in vitro, in vivo and in silico strategies. Methods The plant was collected and the methanolic extract was prepared from its rhizome. Protein denaturation test, hypotonicity and heat-induced haemolysis assays were performed in vitro. The in vivo anti-rheumatoid potential was assessed in Freund’s complete adjuvant (FCA)-induced Wistar rat model through inflammatory paw-edema, haematological, biochemical, radiological and histopathological measurements. Moreover, metabolites of methanolic extract were screened by gas chromatography-mass spectrometry (GC-MS) and 3D molecular structures of active components were utilized for in silico docking study using AutoDock. Results In vitro results evinced a significant (p < 0.05) anti-inflammatory activity of the rhizome methanolic extract in a dose-linear response. Further, Drynaria quercifolia rhizome methanolic extract (DME) significantly ameliorated rheumatoid arthritis as indicated by the inhibition of arthritic paw-edema (in millimeter) in the rat rheumatoid arthritis models in both the low (57.71 ± 0.99, p < 0.01) and high dose groups (54.45 ± 1.30, p < 0.001) when compared to arthritic control. Treatment with DME also normalized the haematological (RBC, WBC, platelet counts and hemoglobin contents) and biochemical parameters (total protein, albumin, creatinine and ceruloplasmin) significantly (p < 0.05), which were further supported by histopathological and radiological analyses. Furthermore, GC-MS analysis of DME demonstrated the presence of 47 phytochemical compounds. Compounds like Squalene, Gamma Tocopherol, n-Hexadecanoic acid showed potent inhibition of cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. Conclusion Results from in vivo and in vitro studies indicated that DME possesses a potent anti-inflammatory and anti-arthritic activity. In silico studies delineated the emergent potent inhibitory effects of several bio-active components on the target inflammatory markers (COX-2, TNF-α and IL-6).


2010 ◽  
Vol 7 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Lei Zhao ◽  
Jun-Yan Tao ◽  
Shu-Ling Zhang ◽  
Feng Jin ◽  
Ran Pang ◽  
...  

Melilotus suaveolens Ledebis a traditional medicinal plant for treating inflammation-related disease. This explores the inner anti-inflammatory mechanism ofn-butanol extract fromM. suaveolens Ledeb. Inflammatory cellular model was established by lipopolysaccharide intervention on RAW264.7 cell line. Levels of secreted cytokines TNF-α, IL-1β, IL-6, NO and IL-10 in supernatant, mRNA expression of TNF-α, COX-2, iNOS and HO-1, protein expression of COX-2 and HO-1, activation of NF-κB and ingredients in the extract were assayed by ELISA, real time quantitative PCR, western blot, immunocytochemical test and HPLC fingerprint test, respectively. As a result, the extract could not only markedly reduce the production of pro-inflammatory mediators to different extents by blocking NF-κB activation but also promote the release of anti-inflammatory mediator HO-1 significantly. Each 1 g extract contained 0.023531 mg coumarin and another two high polar ingredients, probably saponins. It can be concluded that the extract has similar effects on antagonizing pro-inflammatory mediators and cytokines like Dexamethasone, and has effects on promoting the production of anti-inflammatory mediators.


Sign in / Sign up

Export Citation Format

Share Document