Asatone Prevents Acute Lung Injury by Reducing Expressions of NF-κB, MAPK and Inflammatory Cytokines

2018 ◽  
Vol 46 (03) ◽  
pp. 651-671 ◽  
Author(s):  
Heng-Yuan Chang ◽  
Yi-Chuan Chen ◽  
Jaung-Geng Lin ◽  
I-Hsin Lin ◽  
Hui-Fen Huang ◽  
...  

Asatone is an active component extracted from the Chinese herb Radix et Rhizoma Asari. Our preliminary studies have indicated that asatone has an anti-inflammatory effect on RAW 264.7 culture cells challenged with lipopolysaccharide (LPS). Acute lung injury (ALI) has high morbidity and mortality rates due to the onset of serious lung inflammation and edema. Whether asatone prevents ALI LPS-induced requires further investigation. In vitro studies revealed that asatone at concentrations of 2.5–20[Formula: see text][Formula: see text]g/mL drastically prevented cytotoxicity and concentration-dependently reduced NO production in the LPS-challenged macrophages. In an in vivo study, the intratracheal administration of LPS increased the lung wet/dry ratio, myeloperoxidase activity, total cell counts, white blood cell counts, NO, iNOS, COX, TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 in the bronchoalveolar lavage fluid as well as mitogen-activated protein kinases in the lung tissues. Pretreatment with asatone could reverse all of these effects. Asatone markedly reduced the levels of TNF-[Formula: see text] and IL-6 in the lung and liver, but not in the kidney of mice. By contrast, LPS reduced anti-oxidative enzymes and inhibited NF-[Formula: see text]B activations, whereas asatone increased anti-oxidative enzymes in the bronchoalveolar lavage fluid and NF-[Formula: see text]B activations in the lung tissues. Conclusively, asatone can prevent ALI through various anti-inflammatory modalities, including the major anti-inflammatory pathways of NF-[Formula: see text]B and mitogen-activated protein kinases. These findings suggest that asatone can be applied in the treatment of ALI.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Fang ◽  
Yuan Gao ◽  
Fen Liu ◽  
Rui Hou ◽  
Run-Lan Cai ◽  
...  

Shuang-Huang-Lian (SHL) is a common traditional Chinese preparation extracted fromLonicerae Japonicae Flos, Scutellariae Radix, andFructus Forsythiae. In this study, we demonstrate the anti-inflammatory and antioxidative effects of SHL on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. SHL reduced the lung wet/dry weight ratio, lowered the number of total cells in the bronchoalveolar lavage fluid, and decreased the myeloperoxidase activity in lung tissues 6 h after LPS treatment. It also inhibited the overproduction of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the bronchoalveolar lavage fluid. Histological studies demonstrated that SHL attenuated LPS-induced interstitial edema, hemorrhage, and the infiltration of neutrophils into the lung tissue. Moreover, SHL could also enhance the superoxide dismutase and catalase activities, increase the reduced glutathione content, and decrease the malondialdehyde content. The present results suggest that SHL possesses anti-inflammatory and antioxidative properties that may protect mice against LPS-induced ALI.


Perfusion ◽  
2003 ◽  
Vol 18 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Wolfgang Eichler ◽  
J F Matthias Bechtel ◽  
Jan Schumacher ◽  
Johanna A Wermelt ◽  
Karl-Friedrich Klotz ◽  
...  

Postoperative acute lung injury (ALI) contributes to the morbidity and mortality following cardiopulmonary bypass (CPB). To determine whether the presence of matrix metalloproteinases (MMPs) is associated with ALI after CPB, MMP-2 and MMP-9 activities in bronchoalveolar lavage fluid (BALF) were compared with parameters indicating impaired gas exchange. In a prospective study, 17 minipigs were subjected to CPB for 60 min. Before and at five and 180 min after CPB, MMP-2 and MMP-9 were assayed in BALF and the arterial-alveolar gradient of oxygen tension (AaDO2), the pulmonary capillary wedge pressure (PCWP) and the water content of lung tissue samples (Wt) were evaluated and compared with baseline values. MMP-2 and MMP-9 increased significantly 5 minutes (2.1- and 6.2-fold, respectively) and 180 minutes (3.4- and 14.3-fold, respectively) post-CPB. AaDO2 and Wt, but not PCWP, increased significantly 180 minutes after CPB and only AaDO2, but not PCWP or Wt, was significantly correlated with MMP-2 (r/0.66, p/0.006) and MMP-9 (r/0.62, p/0.01). In conclusion, high levels of MMP-2 and MMP-9 in the pulmonary compartment are associated with ALI after CPB.


2004 ◽  
Vol 96 (1) ◽  
pp. 293-300 ◽  
Author(s):  
Gilman Allen ◽  
Jason H. T. Bates

In a previous study (Allen G, Lundblad LK, Parsons P, and Bates JH. J Appl Physiol 93: 1709-1715 , 2002), our laboratory used deep inflations (DI) in mice to show that recruitment of closed lung units can be a very transient phenomenon in lung injury. The purpose of this study was to investigate how this transience of lung recruitment depends on the nature and degree of acute lung injury. Mice were administered 50 μl of either saline ( n = 8), 0.01 M ( n = 9) or 0.025 M ( n = 8) hydrochloric acid, or 50 μg ( n = 10) or 150 μg ( n = 6) of LPS and were mechanically ventilated 24-48 h later. At various levels of positive end-expiratory pressure, two DIs were delivered, and forced oscillations were used to obtain a measure of lung stiffness ( H) periodically over 7 min. After LPS exposure, pressure-volume curve hysteresis and recovery in H after DI were no different from saline-exposed controls despite 500 times more neutrophils in bronchoalveolar lavage fluid. Pressure-volume hysteresis and recovery in H were increased in acid-exposed mice ( P < 0.001) and were correlated with bronchoalveolar lavage fluid protein content ( R = 0.81). Positive end-expiratory pressure reduced recovery in H in all groups ( P < 0.01) but reduced pressure-volume hysteresis in the acid-injured groups only ( P < 0.001). We conclude that the effects of DIs in acute lung injury depend on the degree of lung injury but only to the extent that this injury reflects a disruption of the air-liquid interface.


Respirology ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 643-651 ◽  
Author(s):  
Wenting Jin ◽  
Linyi Rong ◽  
Yinkun Liu ◽  
Yuanlin Song ◽  
Yan Li ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Zhimin Miao ◽  
Shulai Lu ◽  
Na Du ◽  
Weiting Guo ◽  
Jidong Zhang ◽  
...  

We have built a rat’s model to investigate whether the hypothermia induced by adenosine 5′-monophosphate (5′-AMP) (AIH) could attenuate acute lung injury induced by LPS in rats. We detected the inflammatory cytokine levels in the plasma and bronchoalveolar lavage fluid samples, and we analyzed the pathological changes in the lungs. We have found that AIH can effectively inhibit acute inflammatory reactions and protect the lung from acute injury induced by LPS in rats.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1206
Author(s):  
Sahibzada Tasleem Rasool ◽  
Rajasekhar Reddy Alavala ◽  
Umasankar Kulandaivelu ◽  
Nagaraja Sreeharsha

Turmeric, the golden Indian spice, and the edible oil of sesame seeds are the essential ingredients of Indian food created by ancestors and established the belief of the curative effect of food for many generations. Considering the anti-inflammatory effects of turmeric, we formulated a nano-emulsion of turmeric infused in edible sesame oil, with a globule size of 200–250 nm using high-energy microfluidization. The product with a zeta potential of −11.5 mV showed spherical globules when imaged for scanning and transmission electron microscopy. We explored the anti-inflammatory potential of this edible nano-emulsion in lung inflammation. The lungs are the internal organ most vulnerable to infection, injury, and rapid inflammation from the external environment because of their constant exposure to pollutants, pathogenic microorganisms, and viruses. We evaluated the nano-emulsion for efficacy in ovalbumin-induced lung injury in mice with an oral treatment for two weeks. The therapeutic effect of nano-emulsion of the sesame oil-extract of turmeric was evident from biochemical analysis of bronchoalveolar lavage fluid, lung histopathology, and flow cytometric analysis. The developed nano-emulsion significantly reduced the inflammation and damage to the alveolar network in ovalbumin-injured mice. Significant reduction in the levels of neutrophils and inflammatory cytokines like IL-4, IL-6, and IL-13 in bronchoalveolar lavage fluid was observed in the nano-emulsion-treated group. Leukotriene B4 and IgE were also significantly altered in the treated group, thus suggesting the suitability of the formulation for the treatment of allergy and other inflammatory conditions. The nano-emulsification process potentiated the immunoregulatory effect of turmeric, as observed from the elevated levels of the natural anti-inflammatory cytokine, IL-10. The dietary constituents-based nano-emulsion of spice turmeric helped in scavenging the free radicals in the injured lungs, thus modulating the inflammation pathway. This easily scalable formulation technology approach can therefore serve as a potential noninvasive and safe treatment modality for reducing lung inflammation in lung injury cases.


2003 ◽  
Vol 15 (7) ◽  
pp. 675-685 ◽  
Author(s):  
Alfred M. Sciuto ◽  
Matthew B. Cascio ◽  
Theodore S. Moran ◽  
Jeffry S. Forster

2021 ◽  
Author(s):  
Jinxin Zhang ◽  
Kuo Shen ◽  
Jiangang Xie ◽  
Shanshou Liu ◽  
Xiaozhi Bai ◽  
...  

Abstract BackgroundSepsis is a fatal disease with a high rate of morbidity and mortality, during which acute lung injury is the earliest and most serious complication. Macrophage plays a crucial role in the initiation and progress of sepsis. This study meant to explore the effect of IL-6 knockout in CLP induced sepsis.MethodsIn this study, cecal ligation and puncture (CLP) was performed on wildtype and interleukin 6 (IL-6) knockout C57 mice. General condition and death rate of sepsis mice were observed. organ samples (lungs, livers, kidneys and hearts) and serum were collected for histology observation and inflammatory cytokine detection. Lung tissue injury detection were conducted via lung injury score, wet/dry ration and protein concentrations measurement of Bronchoalveolar lavage fluid (BALF). In in vivo studies, RAW264.7 macrophages were transfected with IL-6 specific siRNA and treated with LPS. After exposed to IL-6 specific siRNA and LPS, expression of inflammatory cytokines interleukin 1 (IL-1), tumor necrosis factor- (TNF-), IL-6 and interleukin 10 (IL-10) were detected by RT-qPCR, concentration of IL-1 and TNF- in culture supernatant were detected by ELISA and M1 and M2 markers were detected by western blot and flow cytometry.ResultsWe constructed CLP induced sepsis models and found that inhibition of IL-6 could improve general condition and death rate of sepsis mice. Mice in IL-6 knockout group display improved tissue damage, especially in the lung tissue. IL-6 knockout relieved inflammatory cytokines storm in both serum and bronchoalveolar lavage fluid while polarized macrophage to an anti-inflammatory M2 phenotype. In cell model, inhibition of IL-6 could alleviate LPS induced expression of inflammatory cytokines IL-1, TNF-, and IL-6 in macrophages. Western blot and Flow cytometry results indicated that expression of M1 markers (iNOS and CD86) in LPS stimulated macrophages were significantly declined while M2 (Arg-1 and CD206) were enhanced when expression of IL-6 was blocked.Conclusion Inhibition of IL-6 alleviated LPS induced inflammation and exerted protective effect in sepsis via regulating macrophage function and polarization.


Sign in / Sign up

Export Citation Format

Share Document