scholarly journals Holographic dark energy and generalized second law

2014 ◽  
Vol 29 (06) ◽  
pp. 1450023 ◽  
Author(s):  
Titus K. Mathew ◽  
P. Praseetha

We explore the validity of the generalized second law (GSL) of thermodynamics in flat FRW universe with apparent horizon and event horizon as the boundary. We found that in a universe with holographic dark energy and dark matter, interacting with each other, the GSL is satisfied at the apparent horizon and partially satisfied at the event horizon under thermal equilibrium conditions. We also analyzed the GSL under non-equilibrium conditions and shows that the fulfillment of GSL at the apparent horizon implies that the temperature of the dark energy is greater than that of the horizon. Thus, there occurs a flow of dark energy towards the apparent horizon. As a result, the entropy of the dark energy decreases and that of the horizon increases. This is verified by finding the evolution of the dark energy entropy and horizon entropy in a dark energy dominated universe under non-equilibrium conditions.

2010 ◽  
Vol 25 (36) ◽  
pp. 3069-3079 ◽  
Author(s):  
JIBITESH DUTTA ◽  
SUBENOY CHAKRABORTY ◽  
M. ANSARI

In this paper, we investigate the validity of the generalized second law of thermodynamics (GSLT) in the DGP braneworld. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon or the event horizon. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two-fluid system: one component is the holographic dark energy and the other component is in the form of dust.


2019 ◽  
Vol 34 (07n08) ◽  
pp. 1950055 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Nadeem Azhar

Among various dark energy models, Tsallis holographic dark energy model shows the dynamical enthusiasm to describe the transition phase of the universe. In this paper, we consider Tsallis holographic dark energy with event and apparent horizon as an infrared cutoff in the framework of dynamical Chern–Simon modified gravity and non-flat FRW universe. We explore Hubble, equation of state and deceleration parameters and found that Hubble parameter lies in the range [Formula: see text] and [Formula: see text] for event and apparent horizon trajectories, respectively. It is mentioned here that the equation of state parameter lies within the range [Formula: see text] (event) and [Formula: see text] (apparent). Also, deceleration parameter for both cases show accelerated and decelerated phase of universe as well as cosmological constant. Moreover, we also checked the stability of our model through square speed of sound, which shows the positive behavior (exhibits the stability of the model). Finally, we observe that the generalized second law of thermodynamics remains valid in both cases of horizon.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Emmanuel N. Saridakis ◽  
Spyros Basilakos

AbstractWe investigate the validity of the generalized second law of thermodynamics, applying Barrow entropy for the horizon entropy. The former arises from the fact that the black-hole surface may be deformed due to quantum-gravitational effects, quantified by a new exponent $$\Delta $$ Δ . We calculate the entropy time-variation in a universe filled with the matter and dark energy fluids, as well as the corresponding quantity for the apparent horizon. We show that although in the case $$\Delta =0$$ Δ = 0 , which corresponds to usual entropy, the sum of the entropy enclosed by the apparent horizon plus the entropy of the horizon itself is always a non-decreasing function of time and thus the generalized second law of thermodynamics is valid, in the case of Barrow entropy this is not true anymore, and the generalized second law of thermodynamics may be violated, depending on the universe evolution. Hence, in order not to have violation, the deformation from standard Bekenstein–Hawking expression should be small as expected.


2010 ◽  
Vol 19 (07) ◽  
pp. 1205-1215 ◽  
Author(s):  
M. R. SETARE ◽  
A. SHEYKHI

We examine the validity of the generalized second law of thermodynamics in a non-flat universe in the presence of viscous dark energy. First we assume that the universe is filled only with viscous dark energy. Then, we extend our study to the case where there is an interaction between viscous dark energy and pressureless dark matter. We examine the time evolution of the total entropy, including the entropy associated with the apparent horizon and the entropy of the viscous dark energy inside the apparent horizon. Our study shows that the generalized second law of thermodynamics is always protected in a universe filled with interacting viscous dark energy and dark matter in a region enclosed by the apparent horizon. Finally, we show that the the generalized second law of thermodynamics is fulfilled for a universe filled with interacting viscous dark energy and dark matter by taking into account the Casimir effect.


2013 ◽  
Vol 28 (17) ◽  
pp. 1350072 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

This paper is devoted to check the validity of laws of thermodynamics for Kaluza–Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius L with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius L for a specific range of model parameters.


Sign in / Sign up

Export Citation Format

Share Document