scholarly journals Spectrum of area in the Faddeev formulation of gravity

2016 ◽  
Vol 31 (19) ◽  
pp. 1650114 ◽  
Author(s):  
V. M. Khatsymovsky

Faddeev formulation of general relativity (GR) is considered where the metric is composed of ten vector fields or a ten-dimensional tetrad. Upon partial use of the field equations, this theory results in the usual general relativity (GR). Earlier, we have proposed first-order representation of the minisuperspace model for the Faddeev formulation where the tetrad fields are piecewise constant on the polytopes like four-simplices or, say, cuboids into which [Formula: see text] can be decomposed, an analogue of the Cartan–Weyl connection-type form of the Hilbert–Einstein action in the usual continuum GR. In the Hamiltonian formalism, the tetrad bilinears are canonically conjugate to the orthogonal connection matrices. We evaluate the spectrum of the elementary areas, functions of the tetrad bilinears. The spectrum is discrete and proportional to the Faddeev analog [Formula: see text] of the Barbero–Immirzi parameter [Formula: see text]. The possibility of the tetrad and metric discontinuities in the Faddeev gravity allows to consider any surface as consisting of a set of virtually independent elementary areas and its spectrum being the sum of the elementary spectra. Requiring consistency of the black hole entropy calculations known in the literature we are able to estimate [Formula: see text].

2015 ◽  
Vol 30 (32) ◽  
pp. 1550174 ◽  
Author(s):  
V. M. Khatsymovsky

Faddeev formulation of general relativity (GR) is considered where the metric is composed of ten vector fields or a ten-dimensional tetrad. Upon partial use of the field equations, this theory results in the usual GR. Earlier we have proposed some minisuperspace model for the Faddeev formulation where the tetrad fields are piecewise constant on the polytopes like 4-simplices or, say, cuboids into which [Formula: see text] can be decomposed. Now we study some representation of this (discrete) theory, an analogue of the Cartan–Weyl connection-type form of the Hilbert–Einstein action in the usual continuum GR.


2014 ◽  
Vol 29 (27) ◽  
pp. 1450141 ◽  
Author(s):  
V. M. Khatsymovsky

We consider Faddeev formulation of General Relativity (GR) in which the metric is composed of ten vector fields or a 4 ×10 tetrad. This formulation reduces to the usual GR upon partial use of the field equations. A distinctive feature of the Faddeev action is its finiteness on the discontinuous fields. This allows to introduce its minisuperspace formulation where the vector fields are constant everywhere on ℝ4 with exception of a measure zero set (the piecewise constant fields). The fields are parametrized by their constant values independently chosen in, e.g. the 4-simplices or, say, parallelepipeds into which ℝ4 can be decomposed. The form of the action for the vector fields of this type is found. We also consider the piecewise constant vector fields approximating the fixed smooth ones. We check that if the regions in which the vector fields are constant are made arbitrarily small, the minisuperspace action and equations of motion tend to the continuum Faddeev ones.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


1969 ◽  
Vol 47 (21) ◽  
pp. 2401-2404 ◽  
Author(s):  
S. J. Wilson

An exact solution of the field equations of general relativity is obtained for a static, spherically symmetric distribution of charge and mass which can be matched with the Reissner–Nordström metric at the boundary. The self-energy contributions to the total gravitational mass are computed retaining only the first order terms in the gravitational constant.


1991 ◽  
Vol 106 (3) ◽  
pp. 273-289 ◽  
Author(s):  
M. Mattes ◽  
M. Sorg

2005 ◽  
Vol 02 (05) ◽  
pp. 839-871 ◽  
Author(s):  
MANUEL DE LEÓN ◽  
JESÚS MARÍN-SOLANO ◽  
JUAN CARLOS MARRERO ◽  
MIGUEL C. MUÑOZ-LECANDA ◽  
NARCISO ROMÁN-ROY

We present a geometric algorithm for obtaining consistent solutions to systems of partial differential equations, mainly arising from singular covariant first-order classical field theories. This algorithm gives an intrinsic description of all the constraint submanifolds. The field equations are stated geometrically, either representing their solutions by integrable connections or, what is equivalent, by certain kinds of integrable m-vector fields. First, we consider the problem of finding connections or multivector fields solutions to the field equations in a general framework: a pre-multisymplectic fiber bundle (which will be identified with the first-order jet bundle and the multi-momentum bundle when Lagrangian and Hamiltonian field theories are considered). Then, the problem is stated and solved in a linear context, and a pointwise application of the results leads to the algorithm for the general case. In a second step, the integrability of the solutions is also studied. Finally, the method is applied to Lagrangian and Hamiltonian field theories and, for the former, the problem of finding holonomic solutions is also analyzed.


1990 ◽  
Vol 05 (04) ◽  
pp. 725-746 ◽  
Author(s):  
A. FOUSSATS ◽  
O. ZANDRON

By considering two explicit examples D=6 and D=11 supergravities we show the applicability, and check the validity of the first order canonical covariant formalism on group manifold. In each case we find the primary constraints, the total Hamiltonian and the field equations of motion. Moreover, we show how the Bianchi identities appear in the covariant Hamiltonian formalism.


2019 ◽  
Vol 74 (7) ◽  
pp. 617-633 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe recall a classical theory of torsion gravity with an asymmetric metric, sourced by a Nambu–Goto + Kalb–Ramond string [R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002)]. We explain why this is a significant gravitational theory and in what sense classical general relativity is an approximation to it. We propose that a noncommutative generalisation of this theory (in the sense of Connes’ noncommutative geometry and Adler’s trace dynamics) is a “quantum theory of gravity.” The theory is in fact a classical matrix dynamics with only two fundamental constants – the square of the Planck length and the speed of light, along with the two string tensions as parameters. The guiding symmetry principle is that the theory should be covariant under general coordinate transformations of noncommuting coordinates. The action for this noncommutative torsion gravity can be elegantly expressed as an invariant area integral and represents an atom of space–time–matter. The statistical thermodynamics of a large number of such atoms yields the laws of quantum gravity and quantum field theory, at thermodynamic equilibrium. Spontaneous localisation caused by large fluctuations away from equilibrium is responsible for the emergence of classical space–time and the field equations of classical general relativity. The resolution of the quantum measurement problem by spontaneous collapse is an inevitable consequence of this process. Quantum theory and general relativity are both seen as emergent phenomena, resulting from coarse graining of the underlying noncommutative geometry. We explain the profound role played by entanglement in this theory: entanglement describes interaction between the atoms of space–time–matter, and indeed entanglement appears to be more fundamental than quantum theory or space–time. We also comment on possible implications for black hole entropy and evaporation and for cosmology. We list the intermediate mathematical analysis that remains to be done to complete this programme.


Author(s):  
Yannick Herfray ◽  
Carlos Scarinci

Abstract General Relativity in dimension $n = p + q$ can be formulated as a gauge theory for the conformal group $\SO\left(p+1,q+1\right)$, along with an additional field reducing the structure group down to the Poincaré group $\ISO\left(p,q\right)$. In this paper, we propose a new variational principle for Einstein geometry which realizes this fact. Importantly, as opposed to previous treatments in the literature, our action functional gives first order field equations and does not require supplementary constraints on gauge fields, such as torsion-freeness. Our approach is based on the ``first order formulation'' of conformal tractor geometry. Accordingly, it provides a straightforward variational derivation of the tractor version of the Einstein equation. To achieve this, we review the standard theory of tractor geometry with a gauge theory perspective, defining the tractor bundle a priori in terms of an abstract principal bundle and providing an identification with the standard conformal tractor bundle via a dynamical soldering form. This can also be seen as a generalization of the so called Cartan-Palatini formulation of General Relativity in which the ``internal'' orthogonal group $\SO\left(p,q\right)$ is extended to an appropriate parabolic subgroup $P\subset\SO\left(p+1,q+1\right)$ of the conformal group.


Sign in / Sign up

Export Citation Format

Share Document