Stability of anisotropic self-gravitating fluids

2018 ◽  
Vol 33 (17) ◽  
pp. 1850095 ◽  
Author(s):  
S. Ahmad ◽  
A. Rehman Jami ◽  
M. Z. Mughal

The aim of this paper is to study the stability as well as the existence of self-gravitating anisotropic fluids in [Formula: see text]-dominated era. Taking a cylindrically symmetric and static spacetime, we computed the corresponding equations of motion in the background of anisotropic fluid distributions. The realistic formulation of energy momentum tensor as well as theoretical model of the scale factors are considered in order to describe some physical properties of the anisotropic fluids. To find the stability of the compact star, we have used Herrera’s technique which is based on finding the radial and the transverse components of the speed of sound. Moreover, the behaviors of other physical quantities are also discussed like anisotropy, matching conditions of interior metric and exterior metric and compactness of the compact structures are also discussed.

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 43
Author(s):  
Yu-Mei Wu ◽  
Yan-Gang Miao

Following the interpretation of matter source that the energy-momentum tensor of anisotropic fluid can be dealt with effectively as the energy-momentum tensor of perfect fluid plus linear (Maxwell) electromagnetic field, we obtain the regular higher-dimensional Reissner–Nordström (Tangherlini–RN) solution by starting with the noncommutative geometry-inspired Schwarzschild solution. Using the boundary conditions that connect the noncommutative Schwarzschild solution in the interior of the charged perfect fluid sphere to the Tangherlini–RN solution in the exterior of the sphere, we find that the interior structure can be reflected by an exterior parameter, the charge-to-mass ratio. Moreover, we investigate the stability of the boundary under mass perturbation and indicate that the new interpretation imposes a rigid restriction upon the charge-to-mass ratio. This restriction, in turn, permits a stable noncommutative black hole only in the 4-dimensional spacetime.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2021 ◽  
Vol 30 (04) ◽  
pp. 2150027
Author(s):  
I. Noureen ◽  
Usman-ul-Haq ◽  
S. A. Mardan

In this work, the evolution of spherically symmetric charged anisotropic viscous fluids is discussed in framework of [Formula: see text] gravity. In order to conduct the analysis, modified Einstein Maxwell field equations are constructed. Nonzero divergence of modified energy momentum tensor is taken that implicates dynamical equations. The perturbation scheme is applied to dynamical equations for stability analysis. The stability analysis is carried out in Newtonian and post-Newtonian limits. It is observed that charge, fluid distribution, electromagnetic field, viscosity and mass of the celestial objects greatly affect the collapsing process as well as stability of stars.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


1987 ◽  
Vol 02 (05) ◽  
pp. 1591-1615 ◽  
Author(s):  
V.A. BEREZIN

A method for the phenomenological description of particle production is proposed. Correspondingly modified equations of motion and energy-momentum tensor are obtained. In order to illustrate this method we reconsider from the new point of view of (i) the C-field Hoyle-Narlikar cosmology, (ii) the influence of the particle production process on metric inside the event horizon of a charged black hole and (iii) a nonsingular cosmological model.


Author(s):  
Z. Yousaf ◽  
M. Z. Bhatti

We explore the aspects of the electromagnetism on the stability of gravastar in a particular modified theory, i.e. [Formula: see text] where [Formula: see text], [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of energy–momentum tensor. We assume a spherically symmetric static metric coupled comprising of perfect fluid in the presence of electric charge. The purpose of this paper is to extend the results of [S. Ghosh, F. Rahaman, B. K. Guha and S. Ray, Phys. Lett. B 767 (2017) 380.] to highlight the effects of [Formula: see text] gravity in the formation of charged gravastars. We demonstrated the mathematical formulation, utilizing different equations of state, for the three respective regions (i.e. inner, shell, exterior) of the gravastar. We have matched smoothly the interior de Sitter and the exterior Reissner–Nordström metric at the hypersurface. At the end we extracted few conclusions by working on the physical features of the charged gravastar, mathematically and graphically.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040004
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper formulates the exact static anisotropic spherically symmetric solution of the field equations through gravitational decoupling. To accomplish this work, we add a new gravitational source in the energy–momentum tensor of a perfect fluid. The corresponding field equations, hydrostatic equilibrium equation as well as matching conditions are evaluated. We obtain the anisotropic model by extending the known Durgapal and Gehlot isotropic solution and examined the physical viability as well as the stability of the developed model. It is found that the system exhibits viable behavior for all fluid variables as well as energy conditions and the stability criterion is fulfilled.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950046 ◽  
Author(s):  
M. Zubair ◽  
Rabia Saleem ◽  
Yasir Ahmad ◽  
G. Abbas

This paper is aimed to evaluate the existence of wormholes in viable [Formula: see text] gravity models (where [Formula: see text] is the scalar curvature and [Formula: see text] is the trace of stress–energy tensor of matter). The exact solutions for energy–momentum tensor components depending on different shapes and redshift functions are calculated without some additional constraints. To investigate this, we consider static spherically symmetric geometry with matter contents as anisotropic fluid and formulate the Einstein field equations for three different [Formula: see text] models. For each model, we derive expression for weak and null energy conditions and graphically analyzed its violation near the throat. It is really interesting that wormhole solutions do not require the presence of exotic matter — like that in general relativity. Finally, the stability of the solutions for each model is presented using equilibrium condition.


2003 ◽  
Vol 12 (06) ◽  
pp. 1095-1112 ◽  
Author(s):  
METIN ARIK ◽  
OZGUR DELICE

We present cylindrically symmetric, static solutions of the Einstein field equations around a line singularity such that the energy momentum tensor corresponds to infinitely thin photonic shells. Positivity of the energy density of the thin shell and the line singularity is discussed. It is also shown that thick shells containing mostly radiation are possible in a numerical solution.


Sign in / Sign up

Export Citation Format

Share Document