A study of shell structure in normal to exotic nuclides within relativistic Hartree–Bogoliubov approximation

2019 ◽  
Vol 34 (02) ◽  
pp. 1950014 ◽  
Author(s):  
Smriti Thakur ◽  
Shashi K. Dhiman

The purpose of this work is to study theoretically the shell structure of even–even isotopes in Si, S, Ar and Ca and isotones at neutron number N = 0, 28, 50 and 82. We employed Covariant Relativistic self-consistent mean field models analogous to Kohn–Sham density functional theory to construct the Nuclear Density Functionals from Lagrangian densities based on meson exchange and point coupling models. The pairing correlations of nucleons are considered by the relativistic Hartree–Bogoliubov functional based on quasi-particle operators of Bogoliubov transformations. The theoretical calculations of shell closure parameter [Formula: see text](N) and the differential variation of the two-neutron separation energy [Formula: see text](Z, N) provide recognizable signature of shell closure at N = 14 and 20 in case of Si, N = 14, 20 and 28 in S, Ar and Ca isotopes and are consistent with recent experimental investigations of new sub-shell gaps.

2021 ◽  
Author(s):  
Cade Spaulding ◽  
Hamid Teimouri ◽  
S.L. Narasimha ◽  
Anatoly B. Kolomeisky

Motor proteins, also known as biological molecular motors, play important roles in various intracellular processes. Experimental investigations suggest that molecular motors interact with each other during the cellular transport, but the nature of such interactions remains not well understood. Stimulated by these observations, we present a theoretical study aimed to understand the effect of the range of interactions on dynamics of interacting molecular motors. For this purpose, we develop a new version of the totally asymmetric simple exclusion processes in which nearest-neighbor as well as the next nearest-neighbor interactions are taken into account in a thermodynamically consistent way. A theoretical framework based on a cluster mean-field approximation, which partially takes correlations into account, is developed to evaluate the stationary properties of the system. It is found that fundamental current-density relations in the system strongly depend on the strength and the sign of interactions, as well as on the range of interactions. For repulsive interactions stronger than some critical value, increasing the range of interactions leads to a change from unimodal to trimodal dependence in the flux-density fundamental diagram. Theoretical calculations are tested with extensive Monte Carlo computer simulations. Although in most ranges of parameters excellent agreement between theoretical predictions and computer simulations is observed, there are situations when the cluster mean-field approach fails to describe properly the dynamics in the system. Theoretical arguments to explain these observations are presented. Our theoretical analysis clarifies the microscopic picture of how the range of interactions influences the dynamics of interacting molecular motors.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 128 ◽  
Author(s):  
Mai Bay ◽  
Nguyen Hien ◽  
Subin Son ◽  
Nguyen Trinh ◽  
Nguyen Trung ◽  
...  

A mercury sensor (N-(rhodamine-6G)lactam-ethylenediamine-4-dimethylamino-cinnamaldehyde—RLED) based on the Hg2+-promoted hydrolysis reaction has been designed and developed with a combination of theoretical calculations and experimental investigations. The interaction between RLED and Hg2+ goes through a fast-initial stage with formation of a 1:1 complex, followed by a slow hydrolysis process. The formation of durable intermediate complexes is due to quite a long hydrolysis reaction time. As a result, RLED can selectively detect Hg2+ in the presence of other metal ions, with a detection limit of 0.08 μM for the colorimetric method, and of 0.008 μM with the fluorescent method. In addition, the RLED sensor can work in a solution with a small amount of organic solvent, with a wide pH range from 5 to 10. The time-dependent density functional theory has been used for investigations of the excitation and de-excitation processes in RLED, intermediate complexes, and reaction products, thereby clarifying the changes in the fluorescence intensity before and after the RLED interacts with Hg2+ ions.


2019 ◽  
Vol 10 (3) ◽  
pp. 5586-5591

In this study, a simple and efficient method for the synthesis of 1,5-dihydropyrano[2,3-c]chromene derivatives is reported by three component reaction of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin in the presence of piperidine as base in ethanol, under reflux conditions. Also, the experimental results involving new and already synthesized compounds are compared with the theoretical calculations. The energy, molecular electrostatic potential (MEP), HOMO–LUMO energy gap, chemical properties and NMR analyses of 1,5-dihydropyrano[2,3-c]chromene derivatives in DMSO solution were estimated using density functional theory and 6-311++G (d,p) basis set. The solvent effect was explored using the polarizable continuum model (PCM) method. Increasing polarity and having no much difference in energies show the more effects of newly synthesized compounds (R2-DHPC) towards already synthesized compounds (R4-DHPC) in human body. Also, the results display that there is a good agreement between experimental and theoretical data.


2018 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Novendra Novendra ◽  
Zamirbek Akimbekov ◽  
Dayaker Gandrath ◽  
...  

By combining mechanochemical synthesis and calorimetry with theoretical calculations, we demonstrate that dispersion-corrected periodic density functional theory (DFT) can accurately survey the topological landscape and predict relative energies of polymorphs for a previously inaccessible fluorine-substituted zeolitic imidazolate framework (ZIF). Experimental screening confirmed two out of three theoretically anticipated polymorphs, and the calorimetric measurements provided an excellent match to theoretically calculated energetic difference between them.<br>


Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


2020 ◽  
Vol 18 (1) ◽  
pp. 936-942
Author(s):  
Ardhmeri Alija ◽  
Drinisa Gashi ◽  
Rilinda Plakaj ◽  
Admir Omaj ◽  
Veprim Thaçi ◽  
...  

AbstractThis study is focused on the adsorption of hexavalent chromium ions Cr(vi) using graphene oxide (GO). The GO was prepared by chemical oxidation (Hummers method) of graphite particles. The synthesized GO adsorbent was characterized by Fourier transform infrared spectroscopy and UV-Vis spectroscopy. It was used for the adsorption of Cr(vi) ions. The theoretical calculations based on density functional theory and Monte Carlo calculations were used to explore the preferable adsorption site, interaction type, and adsorption energy of GO toward the Cr(vi) ions. Moreover, the most stable adsorption sites were used to calculate and plot noncovalent interactions. The obtained results are important as they give molecular insights regarding the nature of the interaction between GO surface and the adsorbent Cr(vi) ions. The found adsorption energy of −143.80 kcal/mol is indicative of the high adsorptive tendency of this material. The adsorption capacity value of GO toward these ions is q = 240.361 mg/g.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Reponen ◽  
R. P. de Groote ◽  
L. Al Ayoubi ◽  
O. Beliuskina ◽  
M. L. Bissell ◽  
...  

AbstractUnderstanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with the measurement of the charge radius of 96Ag (N = 49). The results provide a challenge for nuclear theory: calculations are unable to reproduce the pronounced discontinuity in the charge radii as one moves below N = 50. The technical advancements in this work open the N = Z region below 100Sn for further optical studies, which will lead to more comprehensive input for nuclear theory development.


2013 ◽  
Vol 209 ◽  
pp. 190-193
Author(s):  
Nisarg K. Bhatt ◽  
Brijmohan Y. Thakore ◽  
P.R. Vyas ◽  
A.Y. Vahora ◽  
Asvin R. Jani

Commonly employed quasiharmonic approximation (QHA) is inadequate to account for intrinsic anharmonism such as phonon-phonon interaction, vacancy contribution, etc. Though anharmonic contributions are important at high temperatures and low pressure, complete ab initio calculations are scanty due largely to laborious computational requirements. Nevertheless, some simple semi-empirical schemes can be used effectively to incorporate the anharmonism. In this regards, in the present study we have proposed a simple computational scheme to include the effect of vacancy directly into the description within the mean-field potential approach, which calculates vibrational free energy of ions. Validity of the scheme is verified by taking calcium oxide as a test case. Equilibrium properties at (T,P) = (0,0) condition is obtained within the tight-binding second-moment approximation (TB-SMA), whose parameters were determined through first principles density functional theory. Kohn-Sham equations for core electrons were solved using ultrasoft plane-wave pseudopotential employing the generalized gradient approximation for exchange and correlation. Present findings for thermal expansion and high-T EOS clearly show perceptible improvement over the case when vacancy contribution was not included. Some related thermodynamic properties are also calculated and compared with the available experimental and theoretical data.


2011 ◽  
Vol 20 (08) ◽  
pp. 1663-1675 ◽  
Author(s):  
A. BHAGWAT ◽  
Y. K. GAMBHIR

Systematic investigations of the pairing and two-neutron separation energies which play a crucial role in the evolution of shell structure in nuclei, are carried out within the framework of relativistic mean-field model. The shell closures are found to be robust, as expected, up to the lead region. New shell closures appear in low mass region. In the superheavy region, on the other hand, it is found that the shell closures are not as robust, and they depend on the particular combinations of neutron and proton numbers. Effect of deformation on the shell structure is found to be marginal.


Sign in / Sign up

Export Citation Format

Share Document