scholarly journals Quantum probe of time-like naked singularities for electrically and magnetically charged black holes in a model of nonlinear electrodynamics

2020 ◽  
Vol 35 (29) ◽  
pp. 2050242
Author(s):  
M. Mangut ◽  
O. Gurtug

The time-like naked singularities of the electrically and magnetically charged black hole solutions obtained in a model of nonlinear electrodynamics proposed by Kruglov is investigated within the framework of quantum mechanics. In view of quantum mechanics, the spacetime is quantum regular provided that the time evolution of the test quantum wave packet uniquely propagates on an underlying background. Rigorous calculations have shown that when the singularity is probed with specific quantum wave/particle modes, the quantum wave operator turns out to be essentially self-adjoint. Thus, the time evolution of the quantum wave/particle is determined uniquely. In the case of electrically charged black hole background, the unique evolution is restricted to [Formula: see text]-wave only. For the two different magnetically charged black hole backgrounds, the time evolution is restricted to different modes for each case.

2006 ◽  
Vol 74 (6) ◽  
Author(s):  
Cristián Martínez ◽  
Ricardo Troncoso

2015 ◽  
Vol 360 (1) ◽  
Author(s):  
Jin-Ling Geng ◽  
Yu Zhang ◽  
En-Kun Li ◽  
Peng-Fei Duan

Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 205 ◽  
Author(s):  
Irina Dymnikova ◽  
Evgeny Galaktionov

We study the dynamics of electromagnetic fields of regular rotating electrically charged black holes and solitons replacing naked singularities in nonlinear electrodynamics minimally coupled to gravity (NED-GR). They are related by electromagnetic and gravitational interactions and described by the axially symmetric NED-GR solutions asymptotically Kerr-Newman for a distant observer. Geometry is described by the metrics of the Kerr-Schild class specified by T t t = T r r ( p r = − ρ ) in the co-rotating frame. All regular axially symmetric solutions obtained from spherical solutions with the Newman-Janis algorithm belong to this class. The basic generic feature of all regular objects of this class, both electrically charged and electrically neutral, is the existence of two kinds of de Sitter vacuum interiors. We analyze the regular solutions to dynamical equations for electromagnetic fields and show which kind of a regular interior is favored by electromagnetic dynamics for NED-GR objects.


2018 ◽  
Vol 97 (2) ◽  
Author(s):  
Cristián Erices ◽  
Oscar Fuentealba ◽  
Miguel Riquelme

2010 ◽  
Vol 25 (21) ◽  
pp. 4123-4140 ◽  
Author(s):  
KOICHIRO UMETSU

We present the derivation of Hawking radiation by using the tunneling mechanism in a rotating and charged black hole background. We show that the four-dimensional Kerr–Newman metric, which has a spherically nonsymmetric geometry, becomes an effectively two-dimensional spherically symmetric metric by using the technique of the dimensional reduction near the horizon. We can thus readily apply the tunneling mechanism to the nonspherical Kerr and Kerr–Newman metric.


2017 ◽  
Vol 27 (01) ◽  
pp. 1750175 ◽  
Author(s):  
Z. Sherkatghanad ◽  
B. Mirza ◽  
F. Lalehgani Dezaki

We analytically describe the properties of the s-wave holographic superconductor with the exponential nonlinear electrodynamics in the Lifshitz black hole background in four-dimensions. Employing an assumption the scalar and gauge fields backreact on the background geometry, we calculate the critical temperature as well as the condensation operator. Based on Sturm–Liouville method, we show that the critical temperature decreases with increasing exponential nonlinear electrodynamics and Lifshitz dynamical exponent, [Formula: see text], indicating that condensation becomes difficult. Also we find that the effects of backreaction has a more important role on the critical temperature and condensation operator in small values of Lifshitz dynamical exponent, while [Formula: see text] is around one. In addition, the properties of the upper critical magnetic field in Lifshitz black hole background using Sturm–Liouville approach is investigated to describe the phase diagram of the corresponding holographic superconductor in the probe limit. We observe that the critical magnetic field decreases with increasing Lifshitz dynamical exponent, [Formula: see text], and it goes to zero at critical temperature, independent of the Lifshitz dynamical exponent, [Formula: see text].


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Roberto Auzzi ◽  
Stefano Baiguera ◽  
Sara Bonansea ◽  
Giuseppe Nardelli ◽  
Kristian Toccacelo

Abstract We investigate the complexity=volume proposal in the case of Janus AdS3 geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.


Author(s):  
Cosimo Bambi ◽  
Leonardo Modesto ◽  
Shiladitya Porey ◽  
Lesław Rachwał

Sign in / Sign up

Export Citation Format

Share Document