scholarly journals Stability of remnants of Bardeen regular black holes in presence of thermal fluctuations

2021 ◽  
pp. 2130023
Author(s):  
Yawar H. Khan ◽  
Sudhaker Upadhyay ◽  
Prince A. Ganai

In this paper, we discuss remnants of the Bardeen regular black hole motivated by using the concept of thermal fluctuations. First, we derive the equilibrium values of various thermodynamic quantities like entropy, Hawking temperature, pressure, internal energy, Helmholtz free energy and Gibbs free energy in the non-extended phase space. We then discuss geometrothermodynamics (GTD) of Bardeen black hole to study its stability. Next, we estimate the size of black hole remnant in terms of some known parameters of the black hole solution. Motivated by the fact that estimation of size, characteristics and stability of remnants of black holes could further increase our understanding of binary collisions, information loss paradox and dark energy, the black hole remnant, which gives an idea about stable mass left over after evaporation of black hole, is seen to owe its presence due to thermal fluctuations. We see that the thermal fluctuations bring an overall increase in entropy curve. However, in presence of thermal fluctuations, a positive kink, which signifies a maximum increase in the value of entropy, occurs at a certain value of horizon, which is exactly equal to the remnant radius. We observe that the thermal fluctuations, which are characteristics of quantum gravity, lead to stable values of thermodynamic quantities near the remnant radius. In presence of thermal fluctuations, we then derive various corrected thermodynamic potentials and also discuss the validity of first law of black hole thermodynamics for Bardeen black hole.

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1269
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary ◽  
Kazuharu Bamba

We investigate the influence of the first-order correction of entropy caused by thermal quantum fluctuations on the thermodynamics of a logarithmic corrected charged black hole in massive gravity. For this black hole, we explore the thermodynamic quantities, such as entropy, Helmholtz free energy, internal energy, enthalpy, Gibbs free energy and specific heat. We discuss the influence of the topology of the event horizon, dimensions and nonlinearity parameter on the local and global stability of the black hole. As a result, it is found that the holographic dual parameter vanishes. This means that the thermal corrections have no significant role to disturb the holographic duality of the logarithmic charged black hole in massive gravity, although the thermal corrections have a substantial impact on the thermodynamic quantities in the high-energy limit and the stability conditions of black holes.


2019 ◽  
Vol 2019 (10) ◽  
Author(s):  
Nadeem-ul-islam ◽  
Prince A Ganai ◽  
Sudhaker Upadhyay

Abstract We discuss the effect of small statistical thermal fluctuations around the equilibrium of the thermodynamics of a small non-rotating BTZ black hole. This is done by evaluating the leading-order corrections to the thermodynamical equations of state, namely entropy, free energy, internal energy, pressure, enthalpy, Gibbs free energy, and specific heat, quantitatively. In order to analyze the effects of perturbations on the thermodynamics, we plot various graphs and compare corrected and non-corrected thermodynamic quantities with respect to the event horizon radius of a non-rotating BTZ black hole. We also derive the first-order corrections to isothermal compressibility.


2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050070
Author(s):  
Ujjal Debnath

We study the four-dimensional (i) modified Bardeen black hole, (ii) modified Hayward black hole, (iii) charged regular black hole and (iv) magnetically charged regular black hole. For modified Bardeen black hole and modified Hayward black hole, we found only one horizon (event horizon) and then we found some thermodynamic quantities like the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the event horizon. We here study the bounds of the above thermodynamic quantities for these black holes on the event horizon. Then, we examine the thermodynamics stability of the black holes with some conditions. Next, we studied the charged regular black hole and magnetically charged regular black hole and found two horizons (Cauchy and event horizons) of these black holes. Then, we found the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the Cauchy and event horizons. Then, we get some conditions for thermodynamic stability/instability of the black holes. We found the radius of the extremal horizon and Christodoulou–Ruffiini mass and then analyze the above thermodynamic quantities on the extremal horizon. We calculate the sum/subtraction, product, division and sum/subtraction of inverse of surface areas, entropies, irreducible masses, temperatures, Komar energies and specific heat capacities on both the horizons. From these, we found the bounds of the above quantities on the horizons.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850210 ◽  
Author(s):  
C. L. Ahmed Rizwan ◽  
A. Naveena Kumara ◽  
Deepak Vaid ◽  
K. M. Ajith

In this paper, we investigate the Joule–Thomson effects of AdS black holes with a global monopole. We study the effect of the global monopole parameter [Formula: see text] on the inversion temperature and isenthalpic curves. The obtained result is compared with Joule–Thomson expansion of van der Waals fluid, and the similarities were noted. Phase transition occuring in the extended phase space of this black hole is analogous to that in van der Waals gas. Our study shows that global monopole parameter [Formula: see text] plays a very important role in Joule–Thomson expansion.


2020 ◽  
Vol 35 (14) ◽  
pp. 2050113
Author(s):  
Sen Guo ◽  
Yan Han ◽  
Guo Ping Li

In this paper, we study the thermodynamic of the charged AdS black holes in Rastall gravity. Firstly, the thermodynamic quantities of the charged AdS black holes in Rastall gravity are reviewed and the state equation of this black hole is obtained. Then, we investigate the [Formula: see text] critical and the Joule–Thomson expansion of the charged AdS black holes in Rastall gravity in which the critical temperature and the critical exponents are obtained. In addition, we get the inversion temperature and plot the isenthalpic and inversion curves in the [Formula: see text] plane, and also determine the cooling-heating regions of this black hole through the Joule–Thomson expansion. Finally, we investigate the ratio between the minimum inversion and critical temperatures, and find that the Rastall constant [Formula: see text] does not affect of this ratio.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850069 ◽  
Author(s):  
Iarley P. Lobo ◽  
H. Moradpour ◽  
J. P. Morais Graça ◽  
I. G. Salako

A promising theory in modifying general relativity (GR) by violating the ordinary energy–momentum conservation law in curved spacetime is the Rastall theory of gravity. In this theory, geometry and matter fields are coupled to each other in a nonminimal way. Here, we study thermodynamic properties of some black hole (BH) solutions in this framework, and compare our results with those of GR. We demonstrate how the presence of these matter sources amplifies the effects caused by the Rastall parameter in thermodynamic quantities. Our investigation also shows that BHs with radius smaller than a certain amount ([Formula: see text]) have negative heat capacity in the Rastall framework. In fact, it is a lower bound for the possible values of horizon radius satisfied by the stable BHs.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2005 ◽  
Vol 14 (12) ◽  
pp. 2251-2255 ◽  
Author(s):  
M. D. MAIA

The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the M6(4, 2) bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.


Sign in / Sign up

Export Citation Format

Share Document