Monte Carlo modeling of production of three alpha-particles in low energy n +12C interactions

2021 ◽  
Vol 36 (25) ◽  
pp. 2150182
Author(s):  
Khusniddin K. Olimov ◽  
Vladimir V. Lugovoi ◽  
Kosim Olimov ◽  
Maratbek Shodmonov ◽  
Kadyr G. Gulamov ◽  
...  

To describe [Formula: see text] interactions with production of three [Formula: see text]-particles at incident neutron kinetic energy of 14 MeV in a nuclear (photo) emulsion, a Monte Carlo model is proposed for four channels of decay of an excited carbon-12 nucleus into three [Formula: see text]-particles. The Monte Carlo calculation results describe well the experimental data on the distribution of the angle between the three-dimensional momenta of all pairs of [Formula: see text]-particles in a collision event, on the distribution of the angle between the projections of the momentum vectors of all pairs of [Formula: see text]-particles in collision event on each of the coordinate planes, on the distribution of the sum of the kinetic energies of all pairs of [Formula: see text]-particles in a collision event, and the distribution of projections of the momenta of [Formula: see text]-particles on the coordinate planes. The best agreement of the Monte Carlo model results with the experimental data is achieved if the direct decay [Formula: see text] and decay through the formation of an intermediate beryllium nucleus [Formula: see text] are generated with equal probabilities, while the excitation energies of 3.04 MeV, 1.04 MeV, and 0.1 MeV for the beryllium nucleus are generated with relative weights of 75%, 15%, and 10%, respectively.

2019 ◽  
pp. 88-93
Author(s):  
O.R. Trofymenko ◽  
А.V. Nosovsky ◽  
V.I. Gulik

Modeling of the neutron-physical characteristics of the Kyoto University KUCA subcritical facility was conducted using the Monte Carlo Serpent code. The effective multiplication factors for the critical experiments of the series II on the KUCA research subcritical facility were calculated. The presented calculation results were compared with the experimental results and the results of the calculations made using the Monte Carlo codes MCNP6 and KENO-VI.


2017 ◽  
Author(s):  
Christoph Köhn ◽  
Martin Bødker Enghoff ◽  
Henrik Svensmark

Abstract. The nucleation of sulphuric acid molecules plays a key role in the formation of aerosols. We here present a three dimensional particle Monte Carlo model to study the growth of sulphuric acid clusters as well as its dependence on the ambient temperature and the initial particle density.We initiate a swarm of sulphuric acid molecules with a size of 0.15 nm with densities between 107 and 108 cm−3 at temperatures of 200 and 300 K. After every time step, we update the position and velocity of particles as a function of size-dependent diffusion coefficients. If two particles encounter, we merge them and add their volumes and masses. Inversely, we check after every time step whether a polymer evaporates liberating a molecule.We present the spatial distribution as well as the size distribution calculated from individual clusters. We also calculate the nucleation rate of clusters with a radius of 0.85 nm as a function of time, initial particle density and temperature. For 200 K, the nucleation rate increases as a function of time; for 300 K we observe an interplay between clustering and evaporation and thus the oscillation of the nucleation rate around the mean nucleation rate. The nucleation rates obtained from the presented model agree well with experimentally obtained values which serves as a benchmark of our code. In contrast to previous nucleation models, we here present for the first time a code capable of tracing individual particles and thus of capturing the physics related to the discrete nature of particles.


2013 ◽  
Vol 1559 ◽  
Author(s):  
Andreas Latz ◽  
Lothar Brendel ◽  
Dietrich E. Wolf

ABSTRACTWhile the self-learning kinetic Monte Carlo (SLKMC) method enables the calculation of transition rates from a realistic potential, implementations of it were usually limited to one specific surface orientation. An example is the fcc (111) surface in Latz et al. 2012, J. Phys.: Condens. Matter 24, 485005. This work provides an extension by means of detecting the local orientation, and thus allows for the accurate simulation of arbitrarily shaped surfaces. We applied the model to the diffusion of Ag monolayer islands and voids on a Ag(111) and Ag(001) surface, as well as the relaxation of a three-dimensional spherical particle.


1997 ◽  
Vol 490 ◽  
Author(s):  
Myung-Sik Son ◽  
Ho-Jung Hwang

ABSTRACTAn alternative three-dimensional (3D) Monte Carlo (MC) dynamic simulation model for phosphorus implant into (100) single-crystal silicon has been developed which incorporates the effects of channeling and damage. This model calculates the trajectories of both implanted ions and recoiled silicons and concurrently and explicitly affects both ions and recoils due to the presence of accumulative damage. In addition, the model for room-temperature implant accounts for the self-annealing effect using our defined recombination probabilities for vacancies and interstitials saved on the unit volumes. Our model has been verified by the comparison with the previously published SIMS data over commonly used energy range between 10 and 180 keV, using our proposed empirical electronic energy loss model. The 3D formations of the amorphous region and the ultra-shallow junction around the implanted region could be predicted by using our model, TRICSI (TRansport Ions into Crystal-Silicon).


2014 ◽  
Vol 926-930 ◽  
pp. 1538-1541
Author(s):  
Hao Wang ◽  
Guo Quan Liu

Three-dimensional normal grain growth has been simulated in scale 300×300×300 using the generally accepted Potts model Monte Carlo method. The studies of the topology of grains indicate that the mean number of faces in the grain network <f>=13.91 is similar to other simulation results, but higher than most of the experimental data which containing a wide range of values, i.e., <f>=11.16~13.93. The three-dimensional AboavWeaire law and Liu-Yu law are observed to hold, but the fit coefficient is different from the theory models.


2009 ◽  
Vol 66 (10) ◽  
pp. 3131-3146 ◽  
Author(s):  
Robert Pincus ◽  
K. Franklin Evans

Abstract This paper examines the tradeoffs between computational cost and accuracy for two new state-of-the-art codes for computing three-dimensional radiative transfer: a community Monte Carlo model and a parallel implementation of the Spherical Harmonics Discrete Ordinate Method (SHDOM). Both codes are described and algorithmic choices are elaborated. Two prototype problems are considered: a domain filled with stratocumulus clouds and another containing scattered shallow cumulus, absorbing aerosols, and molecular scatterers. Calculations are performed for a range of resolutions and the relationships between accuracy and computational cost, measured by memory use and time to solution, are compared. Monte Carlo accuracy depends primarily on the number of trajectories used in the integration. Monte Carlo estimates of intensity are computationally expensive and may be subject to large sampling noise from highly peaked phase functions. This noise can be decreased using a range of variance reduction techniques, but these techniques can compromise the excellent agreement between the true error and estimates obtained from unbiased calculations. SHDOM accuracy is controlled by both spatial and angular resolution; different output fields are sensitive to different aspects of this resolution, so the optimum accuracy parameters depend on which quantities are desired as well as on the characteristics of the problem being solved. The accuracy of SHDOM must be assessed through convergence tests and all results from unconverged solutions may be biased. SHDOM is more efficient (i.e., has lower error for a given computational cost) than Monte Carlo when computing pixel-by-pixel upwelling fluxes in the cumulus scene, whereas Monte Carlo is more efficient in computing flux divergence and downwelling flux in the stratocumulus scene, especially at higher accuracies. The two models are comparable for downwelling flux and flux divergence in cumulus and upwelling flux in stratocumulus. SHDOM is substantially more efficient when computing pixel-by-pixel intensity in multiple directions; the models are comparable when computing domain-average intensities. In some cases memory use, rather than computation time, may limit the resolution of SHDOM calculations.


2020 ◽  
Vol 24 ◽  
pp. 472-485 ◽  
Author(s):  
Vigneshwaran Thangavel ◽  
Oscar Xavier Guerrero ◽  
Matias Quiroga ◽  
Adelphe Matsiegui Mikala ◽  
Alexis Rucci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document